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Classical economic models assume that people are fully rational and
selfish, while experiments often point to different conclusions. A
canonical example is the Ultimatum Game: one player proposes a
division of a sum of money between herself and a second player,
who either accepts or rejects. Based on rational self-interest, res-
ponders should accept any nonzero offer and proposers should of-
fer the smallest possible amount. Traditional, deterministic models
of evolutionary game theory agree: in the one-shot anonymous
Ultimatum Game, natural selection favors low offers and demands.
Experiments instead show a preference for fairness: often respond-
ers reject low offers and proposers make higher offers than needed
to avoid rejection. Here we show that using stochastic evolutionary
game theory, where agents make mistakes when judging the pay-
offs and strategies of others, natural selection favors fairness.
Across a range of parameters, the average strategy matches the
observed behavior: proposers offer between 30% and 50%, and
responders demand between 25% and 40%. Rejecting low offers
increases relative payoff in pairwise competition between two
strategies and is favored when selection is sufficiently weak. Offer-
ing more than you demand increases payoff when many strategies
are present simultaneously and is favored when mutation is suffi-
ciently high. We also perform a behavioral experiment and find
empirical support for these theoretical findings: uncertainty about
the success of others is associated with higher demands and offers;
and inconsistency in the behavior of others is associatedwith higher
offers but not predictive of demands. In an uncertain world, fairness
finishes first.

cooperation | prosociality | stochastic dynamics

Game theorists traditionally assume that people act fully ra-
tionally to maximize their own financial gains. A wealth of

behavioral data, however, has demonstrated that many people are
influenced by the payoffs of others, exhibiting so-called “other-
regarding preferences” (1). The Ultimatum Game (UG) has been
a particularly influential example of this phenomenon (2). In the
UG, two players have to divide a certain sum of money between
them. One player (the proposer) makes an offer. The other player
(the responder) can either accept the offer, in which case each
receives the money as proposed, or reject the offer, in which case
neither player receives anything. In a one-shot anonymous UG,
a rational self-interested proposer will offer the minimum amount
that she believes will be acceptable to the responder. A rational
self-interested responder will accept any nonzero offer. Thus,
under common knowledge of the rationality of both players, the
subgame perfect Nash equilibrium is for the proposer to make the
minimum possible offer, and for the responder to accept it (2).
To evaluate these predictions, many behavioral experiments

have been conducted using the UG (1–8). Although there is
considerable quantitative variation across studies, two clear qual-
itative deviations from rational self-interest are robustly observed:
(i) many responders choose to reject low (but nonzero) offers, and
(ii) many proposers offer more than the minimum amount re-
quired to avoid rejection. One popular explanation of both of

these findings is that people are motivated by a sense of fairness
(or “inequity aversion”): Subjects prefer both players to receive
equal payoffs, and are willing to pay a price to create more eq-
uitable outcomes (9). By this argument, responders who reject low
offers incur a cost to avoid getting a smaller payoff than the
proposer (disadvantageous inequity), and proposers who offer
more than needed to avoid rejection incur a cost to avoid receiving
a larger payoff than the responder (advantageous inequity). Ad-
ditional evidence of this psychological principle is demonstrated
by an experiment where subjects will pay to alter randomly
assigned payoffs of others to induce greater equality (10).
Furthermore, it is typically observed that people are more

averse to disadvantageous inequity than they are to advanta-
geous inequity (9), and research with children finds that disad-
vantageous inequity develops earlier than advantageous inequity
(11–14). These results suggest that the two forms of fairness are
most likely cognitively distinct. Some have argued that proposer
behavior can be entirely explained by strategic motivations: given
that many responders reject low offers, it may be payoff maxi-
mizing to offer even splits (15, 16). Others, however, contend
that fairness concerns play at least some part in the high offers of
proposers (17, 18); a comprehensive review (1) concludes that
high proposer offers are likely the result of a combination of
strategic and fairness-based motivations.
Fairness presents a proximate psychological motivation for the

observed behavior. What, however, is the ultimate evolutionary
explanation for why we should have come to possess such fair-
ness preferences? To explore the origins of fairness, we study an
evolutionary process in which strategies with higher payoffs tend
to become more common in the population (19–22). This pro-
cess could describe genetic evolution, or cultural evolution
through social learning, both of which have been linked to play in
the UG (4, 18, 23). In the context of genetic evolution, agents
reproduce and die, and mutations introduce variation into the
gene pool. In the context of cultural evolution, individuals
sometimes change strategy and copy the strategy of another, with
higher payoff strategies being more likely to be imitated. Here
mutation represents either experimentation, in which individuals
try new random strategies, or confusion regarding the strategies
used by other players (leading the imitator to adopt a strategy
different from that of the imitatee) (24). This type of process
based on reproduction is distinct from strategy update rules that
use prospective reasoning, such as best response dynamics (25)
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(for a comparison of evolutionary dynamics with prospective
reasoning, see ref. 26).
Using this evolutionary framework, we can explore the con-

ditions under which natural selection leads to fair behavior. The
classical approach to evolutionary game theory (27–29) is de-
terministic. Such models assume that higher payoff strategies al-
ways become more common, whereas lower payoff strategies
always die out. Under deterministic game dynamics, evolution
favors self-interest, and in the UG selection leads to the rational
self-interested strategy where agents offer and demand nothing
(30). To explain fairness using deterministic dynamics, it is there-
fore necessary to invoke some additional evolutionary mechanism.
One approach involves reputation formation (31–36). It has

been shown that fairness can be favored by natural selection if
agents can recognize their partners’ strategies (37, 38) or have
reputations that carry from game to game (30). Here it pays to
reject a stingy offer today so that others will make you higher
offers in the future. Without a sufficiently high expectation of
future interactions and a sufficiently strong reputation system,
however, fairness collapses. An alternate approach studies one-
shot anonymous games but assumes an asymmetric mutation
structure, such that proposers experiment with new strategies less
often than responders: the greater variation in responder behavior
forces proposers to make higher offers (39). A third deterministic
approach involves one-shot anonymous games played among very
small groups. Here payoff relative to your coplayers is critical, and
so accepting unfair offers can put you at a disadvantage. Thus, it
can be advantageous to reject unfair offers. The optimal demand,
however, is inversely proportional to the number of coplayers, and
thus is negligibly greater than zero in all but the smallest groups
(40). Note that theories related to multilevel selection (41, 42)
do not help explain fairness in the UG, as a group of indi-
viduals offering and accepting minimal offers receives the
same average payoff as a group of “fair” players with nonzero
offers and demands.
An important element which is not included in these previous

analyses is that randomness plays a key role in the course of
evolution, especially in finite populations. Agents might be in-
volved in many different games, such that their payoff in the UG
contributes only a small amount to their total fitness (43). Al-
ternatively, individuals may make errors in social learning, due to
issues such as bounded rationality (44) and difficulties in cor-
rectly assessing others’ payoffs. In either situation, lower payoff
strategies may sometimes spread through the population by
chance despite their relative disadvantage, and higher payoff
strategies may die out. Such stochastic effects can have poten-
tially dramatic effects on evolutionary outcomes (26, 43, 45). In
the present paper, we explore the evolution of strategies in the
UG in finite populations, studying the whole spectrum of selec-
tion intensities ranging from the limit of weak selection (where
reproduction is almost completely random) to strong selection
(where higher payoff strategies almost always increase in fre-
quency). We show that when selection is not too strong, evolu-
tion can lead to the nonzero rejections and generous offers
observed experimentally, without the need for any additional
evolutionary mechanisms such as reputation systems, and with
no a priori assumptions about asymmetries or other-regarding
preferences. Self-interested natural selection in finite pop-
ulations favors the evolution of fairness when sufficient ran-
domness is present.
We model the UG by imagining two players who have to split

an amount summing to unity. In any given interaction, players
are randomly assigned to the roles of proposer and responder.
We specify an agent’s strategy with two parameters p and q ∈
[0,1], where p is the amount offered when acting as proposer, and
q is the minimum amount demanded when acting as responder,
or the “rejection threshold.” An offer p is accepted by a re-
sponder with the minimum demand q if and only if p ≥ q.

Therefore, the average payoff for a player using strategy (p1,q1)
interacting with a player using strategy (p2,q2) is given (up to the
factor 1/2, which we henceforth omit) by (i) 1-p1 + p2, if p1 ≥ q2
and p2 ≥ q1; (ii) 1-p1, if p1 ≥ q2 and p2 < q1; (iii) p2, if p1 < q2 and
p2 ≥ q1; and (iv) 0, if p1 < q2 and p2 < q1.
We consider the stochastic evolution of strategies in a pop-

ulation of finite size N. Each player i plays the UG with each of
the N−1 other players, and receives an average payoff πi. Player
i’s effective payoff (or fecundity) is then defined as exp[wπi],
where w is called the “intensity of selection.” An intuition behind
this effective payoff function is that the higher the intensity of
selection, the more likely agents with higher payoffs are to be
imitated (to reproduce). At the extreme of w → ∞, only those
who obtain the highest payoff are imitated (strong selection).
The other extreme w → 0 is called the weak selection limit; in
this case, all strategies have almost the same effective payoff and
the dynamics is dominated by neutral drift. We study the Moran
process (46, 47), where in each generation an individual is ran-
domly picked to change strategy (die), and another individual
is picked proportional to effective payoff to be imitated (re-
produce). With probability u, a mutation occurs and instead
a random strategy is chosen. We begin by considering global
mutation, in which a mutant’s p and q are independently drawn
from the uniform distribution in [0, 1], and later show that the
results are qualitatively unchanged when instead we use local
mutation.
The dynamics depends significantly on the mutation rate u. In

the low mutation limit u → 0, a novel mutant will either die out
or completely take over the population before a new mutant
arises (43, 48–51). Thus, the population transitions between
homogeneous states, in which all agents in the population play
the same strategy at any given time. Here, strategies which can
protect themselves from invasion do best. Conversely, in the high
mutation limit u → 1, all strategies are present at approximately
equal abundances at the same time (24, 52). Thus, success is
determined not by resisting invasion, but by performing best
when playing against all strategies with equal probability (i.e.,
playing a randomly selected opponent). Intermediate mutation
rates result in intermediate outcomes between these two dy-
namical extremes (for technical details, see Methods and Sup-
porting Information).

Results
We begin with agent-based simulations using population size N =
100, and vary the intensity of selection w as well as the mutation
rate u. For each set of simulation parameters we determine the
steady-state frequency distribution over the [p, q] space. First we
ask which strategy is favored by natural selection (i.e., is most
common in the population). We find that the most common
strategy displays p > q > 0 as long as selection strength w is not
too large (Fig. 1). Thus, selection favors both aspects of fairness
observed in behavioral experiments: responders make nonzero
demands (disadvantageous inequity aversion, q > 0) and proposers
offer more than is necessary to avoid rejection (advantageous in-
equity aversion, p > q). Evolution in finite populations can select
for fairness, without needing to invoke any additional mechanisms.
We now turn from the most common strategy to consider the

average (mean) strategy. Fig. 2 shows how the time-averaged
values of p and q vary systematically with changes in selection
strength w and mutation rate u. When selection is very weak, the
dynamics is dominated by neutral drift, and mean p and q are
both ∼0.5. As the selection intensity increases, both p and q de-
crease, approaching the rational self-interested strategy p = q = 0.
Critically, however, q decreases faster than p. Thus, in Fig. 2 we
observe both aspects of fair behavior, p > q and q > 0, across
a wide range of parameter values. As with the modal strategy
considered in Fig. 1, we see in Fig. 2 that although the selection
strength and mutation rate quantitatively affect the mean p and q,
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the qualitative result is general (outside of the weak and strong
selection extremes): The mean proposal p is greater than the
demand q, and the average demand q is substantially greater than
0. These findings are very different from the results of classical
evolutionary game theory using either the replicator equation
studying the mini UG (30) or adaptive dynamics studying the full
UG (53), where the population converges to the rational self-in-
terested strategy p = q = 0 unless other mechanisms are present.
Our results are robust to the manner in which mutants are se-

lected.Replacing the uniformmutation described abovewith a local

mutation scheme in which mutants are some random perturbation
from the parent strategy gives qualitatively similar results. See SI
Local Mutation Kernel and Figs. S2 and S3 for details.
A pessimistic interpretation of the results in Fig. 2 is as follows.

Perhaps selection always favors the rational self-interested strat-
egy p = q = 0, and the fact that the mean p and q transition from
0 to 0.5 asw decreases is the trivial result of increasing neutral drift
driving the mean away from the optimal (selfish) strategy. On the
contrary, however, we clearly see that this is not the case. Instead,
the frequency distributions in Fig. 1 are centered around fair
strategies with large offers and demands, as long as selection is not
too strong. Put differently, the strategy most favored by natural
selection is the strategy that is most common under mutation-se-
lection balance; thus, the fact that p = q = 0 is not the most
common strategy when selection is not so strong shows that we
truly are observing natural selection favoring fairness.
Thus far we have shown that evolution in finite populations

can qualitatively reproduce both the negative and positive as-
pects of fair behavior demonstrated in experiments. Now we ask
whether there can also be quantitative agreement between our
model and the range of behaviors observed in the experimental
data. On the negative side of fairness (disadvantageous inequity
aversion), whereas Homo economicus would accept any nonzero
offer, the mean demand q is substantially greater than zero
across experiments, tending to lie in the range 0.2 < q < 0.35.
On the positive side of fairness (advantageous inequity aversion),
subjects also offer more than is demanded: across experiments,
the average offer p is substantially higher than the average de-
mand, typically in the range 0.3 < p < 0.5 (see Fig. S4 for mean p
and q values from numerous experiments).
We now compare these experimental data with the average

values of p and q from our agent-based simulations, across
a range of selection strengths and mutation rates. We see that
the evolutionary outcomes for a number of parameter combi-
nations are quantitatively consistent with the experimental data,
having mean offers 0.3 < p < 0.5 and mean demands 0.2 < q <
0.35. The parameter regions which lead to this agreement are
highlighted in yellow in Fig. 2. We see that increasing the mu-
tation rate leads to a corresponding increase in the selection
strength needed to reproduce the experimental behavior. This

Fig. 1. With intermediate selection and mutation, the
most common strategy is fair, having p > q > 0. Shown are
the frequencies of [p,q] pairs averaged over 108 gen-
erations. To aid convergence, the p and q values of agents
in the simulations in the figure are discretized in increments
of 1/12 (all other simulations use a continuous strategy
space). Red indicates high frequency; yellow indicates lower
frequency. The most common strategy is indicated with
a black ×. Simulations use n = 100 and u = 10−1.25, with w
varying across 10−1.5 (A), 10−1 (B), 10−0.5 (C), and 102 (D).
Similar results are obtained using other mutation rates (Fig.
S1). Note that strong selection drives the population to the
smallest possible nonzero value of p = q = 1/12 in D (rather
than p = q = 0), for the following reason: although p = q =
1/12 is neutral with p = 1/12, q = 0, the latter strategy can be
invaded by p = q = 0, which in turn is risk-dominated by p =
1/12, q = 1/12; due to the discretized strategy space, no
intermediate strategies exist.

Fig. 2. Across a wide range of selection strengths and mutation rates,
evolution results in fairness on average: the mean minimum amount
demanded has q > 0, and the mean offer has p > q. Shown are time-aver-
aged values of p and q over 108 generations, using the population size n =
100 and mutation rate (A) u = 10−3, (B) u = 10−2, and (C) u = 10−1. Shown in
yellow are the parameter regions which agree with experimental data, 0.3 <
p < 0.5 and 0.2 < q < 0.35, based on additional simulations examining se-
lection strengths in increments of 0.1.
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balancing is required to conserve the level of randomness in the
system, which is increased by higher mutation and decreased by
stronger selection (the opposite is true for the relationship be-
tween selection strength and population size, as shown in Fig.
S5). We see that with the correct level of randomness, our
evolutionary simulations can quantitatively reproduce the range
of average behavior observed in experiments. This agreement
stands in contrast with classical economic approaches as well as
deterministic evolutionary dynamics, and demonstrates the po-
tential power of finite population evolutionary analysis for un-
derstanding human behavior.
In addition to average behavior, it is also of interest to con-

sider how the distribution of individual-level behaviors shown in
Fig. 1 compares with experimental data (see Fig. S6 for histo-
grams of p and q separately, rather than the joint [p,q] distri-
bution shown in Fig. 1). We begin with proposer behavior. Our
model produces a unimodal distribution of p values that drops
off sharply when p rises above 0.5. This result is generally con-
sistent with the findings of behavioral experiments, with the ex-
ception of the model having substantially more variation in offers
than is typically seen in experiments (i.e., a wider distribution),
and including a low but nonzero density of probability weight for
offers above 0.5 (whereas virtually no subjects offer more than
0.5 in most experiments) (1). Turning to responder behavior, our
model again produces a fairly broad unimodal distribution with
relatively little probability weight above 0.5. It is harder to
compare these results with experimental data as few studies
provide distributions of minimum acceptable offers, and the few
that do are not consistent with each other: both unimodal dis-
tributions (2) and bimodal distributions with modes at 0 and 0.5
(3) have been observed. Further exploration of individual-level
behavior, both theoretically and experimentally, is an important
direction for future study.

Discussion
To gain an intuition for the evolutionary success of fairness in
our agent based simulations, we turn to mathematical calcu-
lations. In the weak selection limit, where the average abundance
of all strategies is approximately equal (steady-state p and q are
uniformly distributed on the unit square), it is possible to ana-
lytically determine which strategy is most common. We find that
the most frequent strategy depends strongly on the rate at which
mutations arise in the population (see SI Intuition on the Role of
Mutation and Table S1).
In the high mutation limit, all strategies are present in the

population simultaneously with approximately equal frequency.
Hence, the optimum strategy is the one that maximizes its
expected absolute payoff against a randomly chosen opposing
strategy. As has been shown previously (30), it is intuitive that
this strategy is (1/2, 0). The offer of p = 1/2 maximizes the
proposer’s expected payoff of p(1-p) when playing against
a randomly chosen opponent; and the demand q = 0 maximizes
expected payoff as responder because any nonzero demand
results in lost profit. Thus, in the high mutation limit natural
selection favors the first aspect of fair behavior (advantageous
inequity aversion), with proposal p greater than demand q.
In the low mutation limit, on the other hand, the population

dynamics is very different. A new mutant will either die out or
take over the resident population before another mutant arises.
Thus, although all strategies are still present at equal frequency
in the steady-state distribution when in the limit of weak selec-
tion, at most two strategies are ever present in the population at
the same time. Therefore, what matters in the low mutation limit
is resisting invasion by a single (randomly chosen) other strategy:
it is not expected absolute payoff that determines success, but
rather expected relative payoff in pairwise competition with
a random opponent (52).

What strategy then maximizes expected relative payoff? One
can see that p = q is a logical first requirement for success in the
low mutation limit: any strategy that offers more than it demands
(p > q) loses in pairwise competition with mutant strategies
which offer pm such that p > pm > q (the pm mutant is less
generous than the resident, but still has its offers accepted); and
any strategy that demands more than it offers (p < q) always
rejects its own offers and is outcompeted by all mutant strategies
with pm > qm. Thus, we focus our attention on the self-consistent
set of strategies with p = q. Consider the interaction between
a relatively fair strategy SF with p = q = x, and a relatively unfair
strategy SU with p = q = x-«. Both strategies receive the full
payoff of 1 when playing against themselves; but, when SF meets
SU, surprisingly the more fair strategy receives the higher payoff
(provided it offers less than half). When SF is the proposer, her
offer is accepted, and she earns 1-x whereas SU earns x; when SU
is the proposer, her lower offer is rejected, and neither player
earns anything. Thus, fairer strategies always earn more than less
fair strategies when they interact pairwise as long as x < 0.5.
However, when considering expected relative payoff against
a random opponent, there is a tradeoff: the more you offer (up
to 0.5), the more strategies you outearn, but the smaller your
margin of success is in each pairing. This creates two opposing
forces resulting from increasing your offer: the decreasing mar-
ginal payoff versus the increasing number of strategies you out-
perform. These two forces balance out at some intermediate,
optimal value of x. We find that this balance is achieved at p = q =
1/3, and that this result continues to hold when lifting the
restriction p = q. Thus, when mutations are rare, it pays to
reject nonzero offers; in this case, the most common strategy
has the second experimentally observed aspect of fairness
(disadvantageous inequity aversion), with q > 0.
At intermediate mutation rates, the evolutionary dynamic has

characteristics of both the fully heterogeneous and fully homo-
geneous extremes. Because of the somewhat heterogeneous
nature of the population, p > q is favored by selection; and due to
the somewhat homogeneous nature of the population, q > 0 is
also favored. We therefore find that for Nu > 1, the most fre-
quent strategy has p = (1 + N u)/(4 + 2 N u) and q = 1/(2 + N u).
As shown in Fig. 3, we see evolution favoring both qualitative
attributes of experimentally observed human behavior that were
so challenging for classical game theory’s “economic man”:
nonzero rejection thresholds, q > 0, and proposer’s generosity
beyond what is necessary to avoid rejection, p > q. The same
results hold if instead of one population in which any individual
can be either a proposer or a responder in any given game, we
consider two separate interacting populations, one of proposers
and one of responders. See SI Single–Population Formulation for

Fig. 3. In the weak selection limit, the modal strategy is fair for in-
termediate mutation. Shown are the most common strategies p (blue) and q
(red) as functions of the mutation rate, calculated analytically in the weak
selection limit (see SI Single-Population Formation for details). For low mu-
tation 0 ≤ Nu ≤ 1, p = q = 1/3 is the most common strategy. As mutation
increases, the optimum proposal increases to 1/2 and the optimum threshold
decreases to 0. For intermediate mutation rates, we observe both key fea-
tures of real-world ultimate game behavior: p > q > 0.
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the weak selection limit analysis and SI Two–Population For-
mulation for the treatment of separate populations.
To summarize, we find that (i) weakening selection increases

the favored demand q (and therefore also the favored offer p),
and (ii) increasing the mutation rate increases the favored offer p
but not demand q. We now use these theoretical findings to
generate two testable predictions, and evaluate these predictions
by running a behavioral experiment.
The first prediction stems from the result regarding weakening

selection. In our model, weaker selection means that agents have
a harder time assessing which others have the highest payoffs
when choosing whom to imitate. Therefore, we would predict
that people who developed their strategies in settings where it
was more difficult to assess the successfulness of others would
make both larger offers and larger demands.
The second prediction comes from the result regarding increasing

mutation. In our model, higher mutation means that agents are
more likely to change their strategy at random. Therefore, we would
predict that people who developed their strategies in settings where
the behavior of others is less consistent would make higher offers,
but not higher demands.
To evaluate these two predictions, we conduct an experiment

using the online labor market Amazon Mechanical Turk (54–61).
We recruit n = 140 subjects from around the world to play a one-
shot anonymous UG. In addition, these subjects are asked
“Among those you interact with in daily life, how clear is it which
people are more or less successful?” as a measure of the intensity
of selection under which they developed their strategy, and
“How accurate do you think first impressions are when judging
other people?” as a measure of the consistency of others (i.e., the
inverse of the mutation/experimentation rate) under which they
developed their strategy.
The results validate both of our theoretical predictions. Fig.

4A shows that subjects who report less clarity about the suc-
cessfulness of others offer more and demand more. Fig. 4B
shows that subjects who report less consistency of others offer
more but do not demand more. These results are confirmed by
statistical analysis using linear regression with robust SEs, in-
cluding appropriate controls. See Methods for further details.
We have shown that in finite populations, where dynamics are

stochastic and evolutionary trajectories are influenced by chance,
natural selection favors fairness in the one-shot anonymous UG.

Furthermore, we have validated the predictions of our analysis
using behavioral experiments. Previous analyses of the UG have
focused on situations where selection is strong and higher payoff
strategies always produce more offspring (30, 39, 40). In these
settings where evolution is deterministic, fairness needs addi-
tional mechanisms to evolve. When the role of random chance is
included, however, the results are very different. Without any
reputation systems (30, 37), asymmetries between proposers and
responders (39), or a priori assumptions about other-regarding
preferences (9), the self-interested process of evolution can lead
to behaviors which defy classic rational self-interest models
(26, 45). These stochastic evolutionary simulations for finite
populations can quantitatively reproduce the range of human
behaviors observed in the laboratory. [This is as true for cross-
cultural results on UG play from small-scale societies as it is for
play by Western undergraduates, with the exception of the few
societies in which offers above 50% are consistently rejected
(23).] Thus, we do not necessarily need to invoke additional
mechanisms to provide an evolutionary account of the origins of
fairness, as long as the system is not too deterministic.
The emotions, intuitions, and preferences which guide us to-

ward generosity and righteous anger in the one-shot anonymous
UG (62–65) may be the proximate biological (4) and/or cultural
(23) implementations of behaviors which are advantageous in the
presence of weak selection and imperfect learning (for further
discussion of the role of intuition in economic games, see ref. 66).
Thus, stochastic evolutionary dynamics may offer an explanation
for whywe have come to have such a preference for fairness.When
populations are finite and selection is not too strong, evolution can
be fickle: Fitter strategies sometimes die out, and less-fit strategies
sometimes triumph. However, in this unfair world, myopic self-
interest is vanquished whereas fairness triumphs.

Methods
Agent-Based Simulations. Our main results are produced using agent-based
simulations. In our simulations, agents interact in a well-mixed population of
constant size 100. Each agent i has a strategy vector [pi,qi] specifying that agent’s
behavior when acting as proposer (offers pi) and responder (demands qi).

Each generation, every agent plays the UGwith every other agent, once in
the proposer role and once in the responder role, and the resulting payoff πi
is the average of the payoffs over all 99 pairings.

Then one agent is picked proportional to exp[wπ] to reproduce, where w
is the intensity of selection; and one agent is picked at random to die. With
probability 1−u, the dead agent’s strategy is replaced with the reproducing
agent’s strategy; with probability u, a mutation occurs and instead the dead
agent’s strategy is replaced with a randomly selected strategy. Thus, u is the
mutation rate.

Each agent’s strategy is initialized randomly at the beginning of the sim-
ulation, and the strategies of all agents are recorded over 108 generations.

For details of the weak selection analytical calculations, see SI Single-
Population Formulation.

Behavioral Experiments. To assess our theoretical predictions, we conduct
a behavioral experiment. We recruit n = 140 subjects using the online labor
market Amazon Mechanical Turk (AMT; for an overview of running experi-
ments on AMT, as well as a discussion of the value of combining behavioral
experiments and theoretical models, see ref. 55). Commensurate with stan-
dard wages on AMT, subjects receive a $0.20 baseline payment for partici-
pating, and then play a UG in which $0.40 is at stake. For evidence that these
low stakes do not compromise the validity of behavioral data, see ref. 57.
Subjects read a set of instructions explaining the game, and are told they will
be randomly assigned to be either the proposer or the responder. They are
then asked to calculate the payoff received by the proposer and responder in
two different scenarios to ensure that they understand the payoff structure.
Only subjects who answer correctly are allowed to participate.

After clearing the comprehension questions, subjects indicate the mini-
mum offer they would accept if they are assigned to be the responder. Then
they indicate the amount they would offer if they are assigned to be the
proposer. Finally, they complete a demographic questionnaire that includes
the questions “Among those you interact with in daily life, how clear is it
which people are more or less successful?” and “How accurate do you think

Fig. 4. A behavioral experiment in which subjects play a one-shot anony-
mous UG confirms two predictions of our model. (A) Subjects that report
a less-clear understanding of who in their community is more versus less
successful (i.e., that developed their strategies under weaker selection) make
larger offers and larger demands. (B) Subjects that report first impressions to
be less reliable (i.e., that developed their strategies under higher mutation
rates) make larger offers but not larger demands. Error bars indicate SEM.
For visualization, subjects are divided into two groups in each panel using
a median split on question responses.

Rand et al. PNAS Early Edition | 5 of 6

EV
O
LU

TI
O
N

SO
CI
A
L
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1214167110/-/DCSupplemental/pnas.201214167SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1214167110/-/DCSupplemental/pnas.201214167SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1214167110/-/DCSupplemental/pnas.201214167SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1214167110/-/DCSupplemental/pnas.201214167SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1214167110/-/DCSupplemental/pnas.201214167SI.pdf?targetid=nameddest=STXT


first impressions are when judging other people?,” each reported using a 5-
point Likert scale (1 = Very unclear to 5 = Very clear for the first question;
1 = Very inaccurate to 5 = Very accurate for the second).

Once all subjects have been recruited, they are randomly paired and
assigned roles, the resulting payoffs are calculated, and each subject is paid
accordingly using the AMT payment system. No deception is used. The
practice of having subjects specify a strategy which dictates a decision in each
possible outcome and then having actual payoffs determined by ex post
matching, referred to as the “strategy method,” is a common technique in
experimental economics (and is used by all of the experimental papers
whose data we visualize in Fig. S4). This is particularly true for eliciting re-
sponder behavior in the UG, as low proposer offers are rare and thus it is
difficult to determine how subjects would respond to receiving a low offer.

To analyze the results, we use linear regression with robust SEs. We find
a significant negative effect of clarity of the successfulness of others on UG offer
(coeff = −1.327, P = 0.016), as well as a significant negative effect of the con-
sistency of others on UG offer (coeff = −1.241, P = 0.031). Similarly, we find
a significant negative effect of clarity of the successfulness of others on UG
demand (coeff = −1.097, P = 0.029), but no significant effect of the consistency
of others on UG demand (coeff = 0.294, P = 0.568). These results are qualita-
tively unchanged when including controls for age, sex, income, education and
US residency (clarity of success predicting offer: coeff = −1.412, P = 0.024; con-
sistency predicting offer: coeff = −1.143, P = 0.038; clarity of success predicting
demand: coeff = −1.102, P = 0.044; consistency predicting demand: coeff =
0.100, P = 0.854). This experiment was approved by the Harvard University
Committee on the Use of Human Subjects in Research, Application F17468.
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SI Text
We study the evolutionary dynamics of the Ultimatum Game
(UG) analytically in two ways. The first approach, described in
SI Single-Population Formation, is a “single-population” for-
mulation: we consider a population of size N in which each
individual can be both a proposer and a responder with equal
probability. The second approach, described in SI Two-Pop-
ulation Formation, is a “two-population” formulation: we con-
sider two populations of size N, one of which is a population of
proposers and the other, a population of responders, and we
study their coevolution. Both approaches will yield the same
result; an intuitive explanation of this result is then provided in
SI Intuition on the Role of Mutation.
We then turn to additional agent based simulation results.

Fig. S1 shows that the results in Fig. 1 in the main text are robust
to different mutation rates. SI Local Mutation Kernel and Figs.
S2 and S3 describe our simulations using a local mutation
kernel (rather than the global mutation kernel used in the
main text), and show that the results in Fig. 2 in the main text
are robust to this alternate mutation structure. Fig. S4 shows
the average values of p and q from numerous behavioral ex-
periments as well as from agent-based simulations using par-
ticular parameter sets highlighted in Fig. 2 in the main text.
Fig. S5 shows that the results in Fig. 2 in the main text are
robust to different population sizes. Fig. S6 shows the distri-
bution of individual-level offers and demands for a represen-
tative set of parameters.

SI Single-Population Formulation
Here, we consider a population of N players who play the role of
proposers and responders with equal probability. We specify an
agent’s strategy as the pair S= ð p; qÞ, 0≤ p≤ 1, and 0≤ q≤ 1,
where p is the amount offered when acting as proposer, and q
is the minimum amount demanded when acting as responder,
or the rejection threshold. Hence, the strategy space for the
UG is the unit square. Let AðS1; S2Þ be the expected payoff that
strategy S1 = ð p1; q1Þ gets from strategy S2 = ð p2; q2Þ. Because
we assume that in the interaction between a player using
strategy S1 and a player using strategy S2 each player can be in
the role of the proposer with equal probability, AðS1; S2Þ is
given (up to a 1=2 factor which we henceforth omit) by the
function

AðS1; S2Þ=

8>><
>>:

1− p1 + p2 if p1 ≥ q2 and p2 ≥ q1
1− p1 if p1 ≥ q2 and p2 < q1
p2 if p1 < q2 and p2 ≥ q1
0 if p1 < q2 and p2 < q1

[S1]

Every individual in the population plays the UG with every
other individual and they all get payoffs according to the
function above. The (relative) fecundity (or effective payoff)
of a player with an average payoff π is given by exp½wπ�, where
the parameter w> 0 represents the intensity of selection. In-
dividuals reproduce proportional to their fecundity. In each
time step a random player dies and another player (including
the dying player himself) is picked proportional to fecundity
to replace the dead. Reproduction is subject to mutation: the
offspring inherits the strategy of the parent with probability

1− u and with probability u it adopts a strategy uniformly at
random. We say that strategy S is favored on average in the
mutation-selection equilibrium, if its abundance exceeds the
mean.
Let us first assume that our strategies do not cover the entire

unit square, but in fact are only of the form s= ði=m; j=mÞ
with 1≤ i; j≤m being integers. This discretizes the problem,
making it possible to invoke previous results. To then go back to
the continuous strategy space we simply take the limit m→∞.
Having turned our continuous problem into a discrete one, we

are now interested in the stationary abundance of these discrete
strategies. For this problem, we can use the result in ref. 1 to
conclude that, for large population size N, strategy s is favored by
selection if Ls +NuHs > 0, where

Ls =
1
m2

Xm
i′= 1

Xm
j′= 1

fAðs; sÞ+Aðs; s′Þ−Aðs′; sÞ−Aðs′; s′Þg

Hs =
1
m4

Xm
i′= 1

Xm
j′= 1

Xm
i″= 1

Xm
j″= 1

fAðs; s″Þ−Aðs′; s″Þg
[S2]

Here, s′= ði′=m; j′=mÞ and s″= ði″=m; j″=mÞ. Moreover, ref. 1
showed that the higher the quantity Ls +NuHs > 0, the more
the strategy s is favored by selection. Consequently, to determine
which strategy is most favored by selection, one simply has to
maximize Ls +NuHs > 0.
Taking the limit m→∞ as in Tarnita et al. (2), the sums in S2

converge to the integrals

~LS =
Z1

0

Z1

0

�
AðS; SÞ+A

�
S; S′

�
−A

�
S′; S

�
−A

�
S′; S′

��
dp′dq′

~HS =
Z1

0

Z1

0

Z1

0

Z1

0

�
A
�
S; S″

�
−A

�
S′; S″

��
dp′dq′dp″dq″;

[S3]

where S′= ðp′; q′Þ and S″= ðp″; q″Þ. Moreover, it follows that the
condition for strategy S to be favored by selection is ~LS +
Nu ~HS > 0 and that the most favored strategy is determined by
maximizing ~LS +Nu ~HS > 0. Depending on whether p≥ q or
p< q, the payoff function AðS; SÞ takes two different values
and hence we find the condition for strategy S to be favored
by selection to be

~LS +Nu ~HS = Iðp≥ qÞ+ p2ð−Nu− 2Þ+ q2
�
−
Nu
2

− 1
�

+ pð1+NuÞ+ q−
1
2
> 0; [S4]

where IðconditionÞ is 1 if condition is true and is 0 if condition
is false.
Maximizing S4, we conclude that the optimum strategy (most

abundant in the stationary distribution and hence, by our
measure, most favored by selection) is achieved when p≥ q and
is given by
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�
popt; qopt

�
=

8>><
>>:

�
1
3;

1
3

	
if 0 ≤Nu≤ 1�

1+Nu
4+ 2Nu;

1
2+Nu

	
if Nu> 1

:

Note that for low mutation, the optimum strategy is ð1=3; 1=3Þ.
Hence, the most successful strategy is one that offers 33% and
also rejects any offer lower than 33%. As mutation increases, the
proposal increases and the rejection threshold decreases. For
high mutation, the most frequent strategy is ð1=2; 0Þ; thus the
proposal is 50% and the rejection threshold is 0.

SI Two-Population Formulation
Next we will derive the same results as above but using a dif-
ferent approach. Instead of considering a population where
each individual can be both proposer and responder, we con-
sider two distinct populations––the population of proposers
and that of responders––and explore their evolutionary game
dynamics. This means that, unlike in SI Single-Population
Mutation, where the strategy of an individual was given by
a vector S= ðp; qÞ∈ ½0; 1�× ½0; 1�, here the strategy of an in-
dividual is given by one number. Thus, an individual from the
population of proposers will have strategy Sprop = p∈ ½0; 1�,
which represents the offer he makes and an individual from the
population of responders will have strategy Sresp = q∈ ½0; 1�,
which represents his rejection threshold. When two such
players meet, their payoffs are given by

Apropðp; qÞ=


1− p ðif p≥ qÞ
0 ðif p< qÞ

Arespðp; qÞ=


p ðif p≥ qÞ
0 ðif p< qÞ

; [S5]

where Aprop and Aresp, respectively, represent payoffs of the pro-
poser and the responder.
Suppose that there are N players in each population (i.e., N

proposers and N responders). Each proposer plays the UG
described above with every responder in the responders’ pop-
ulation and obtains an average game payoff. Similarly, each
responder plays the game with every proposer and obtains an
average game payoff. We assume that selection occurs in each
population according to payoffs in the UG. More specifically,
a random player in either population dies (in cultural evolution
terms, he attempts to change his strategy) and another player in
the same population (it can be the dying player himself) replaces
the dead with its offspring with probability proportional to one’s
fecundity. We assume that one’s (relative) fecundity is given by
exp½wπ�, where π represents one’s average payoff in the game
and w> 0 represents the intensity of selection. Reproduction
(imitation) occurs with mistakes––with probability u, the off-
spring is susceptible to mutation and randomly adopts a strat-
egy uniformly at random, independently of its parent’s
strategy.
For simplicity of our analysis, we will first discretize the

problem, as before. Thus, we first consider that the possible
proposals have the form sprop = i=m and the possible rejection
thresholds have the form sresp = j=m, where m≥ 1 is an integer
and 1≤ i; j≤m. In this case, assuming weak selection, w→ 0,
Ohtsuki et al. (3) have obtained the result that the combina-
tion of proposer’s and responder’s strategies that is most
abundant in the stationary distribution (and hence, by our
definition, is most favored by selection) is the one that max-
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A direct calculation shows
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where IðconditionÞ is 1 if condition is true and is 0 if condition is
false. Now let p= i=m and q= j=m. Substituting i= pm and j= qm
and taking the limit m→∞ gives

Lðp; qÞ = Iðp≥ qÞ− 2p2 − q2 + p+ q−
1
2

Hðp; qÞ = − p2 −
1
2
q2 + p

: [S8]

A direct calculation now shows that, for large N, the most
abundant pair of strategies ðpopt; qoptÞ [obtained by maximizing
Lðp; qÞ+ 2ðN − 1ÞuHðp; qÞ] is given by

�
popt; qopt

�
=

8>><
>>:

�
1
3;

1
3

	
if 0 < 2Nu≤ 1�

1+ 2Nu
4+ 4Nu;

1
2+ 2Nu

	
if 1 < 2Nu

[S9]

This result is exactly the same as the one for the single-population
model in SI Single-Population Mutation except that Nu is re-
placed with 2Nu. This makes sense, because the total population
size in the two-population formulation is N +N = 2N, whereas it
is N in the one-population formulation.

SI Intuition on the Role of Mutation
As we have seen, the magnitude of the rescaled mutation rate Nu
is a crucial determinant of the strategy that is favored the most
by natural selection (= the one that is most frequently observed
in the mutation-selection equilibrium of our stochastic evolu-
tionary dynamics). Here, we try to explain the reason for that.
In our formulation, a mutant strategy, S= ðp; qÞ, is randomly

chosen from our strategy space, which is the unit square ½0; 1�×
½0; 1�. This assumption means that a mutant almost surely
adopts a strategy that is not observed in a current population.
Therefore, mutation increases variation in strategies. At the
same time, finiteness of the population size reduces the variation
via random sampling of a finite number of offspring. What is
then important is how many different strategies coexist in a pop-
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ulation of size N. Because our model corresponds to Moran in-
finitely many alleles model in population genetics, many results are
already known. The expected number of different strategies coex-
isting in the population is given by the following exact formula (4):

XN−1

k= 0

Nu
Nu+ kð1− uÞ: [S10]

Table S1 shows some values of this expression for various N and u.
From S10 (but also from Table S1) we see that, in the low mu-
tation limit Nu→ 0, the number of different strategies in the
population is close to 1, suggesting that the population is almost
always monomorphic. When a new and rare mutant appears in the
population, the number of different strategies becomes 2 (resident
and mutant), and we expect that mutants will either die out or
take over the resident population before another new mutant
arises. Thus, at most two strategies are involved in a takeover at
any moment in time. Therefore, in the low mutation, a strategy is
selected if it can resist invasion by a single randomly chosen
strategy. Hence, what needs to be maximized is expected relative
payoff in pairwise competition with a random opponent.
As Nu increases, the number of different strategies present in

the population also increases. In the high mutation limit, all
strategies are present in the population simultaneously with
approximately equal frequency. Hence, the optimum strategy is
the one that maximizes its expected absolute payoff against
a randomly chosen opposing strategy. At intermediate mutation
rates, the evolutionary dynamic has characteristics of both the
fully heterogeneous and fully homogeneous extremes. How these
conclusions play a role in determining the winning strategies is
explained at length in the main text.

SI Local Mutation Kernel
In the main text analysis and simulations, a mutant’s p and q
values are randomly picked from the uniform distribution ½0; 1�.
Thus, mutations are “global,” in the sense that a mutant’s new
strategy has no relation to the previous strategy. An alternative
scheme, however, uses local mutation, where the mutant strategy
is some perturbation off of the parent strategy. To investigate the
effects of local mutation, we use the following mutation kernel.
For a parent with p= p*, the mutant p is picked from a β-dis-
tribution defined by the probability density function

f ðpÞ= pα−1ð1− pÞβ−1Z 1

0
uα−1ð1− uÞβ−1du

; [S11]

where α= ðp*γ − 2p* + 1Þ=ð1− p*Þ and β= γ if x< 0:5 or α= γ and
β= ðð1− p*Þγ − 2ð1− p*Þ+ 1Þ=p* if x≥ 0:5, and γ is a parameter
determining how similar the mutant tends to be to the parent.
A β-distribution is used as this distribution is bounded on the
interval ½0; 1� and is unimodal if α; β> 1. The particular values
of α and β are chosen such that the modal value of the distri-
bution is p*.
Fig. S2 shows sample probability density functions for different

values of p*, using γ = 50. The same distribution is used to in-
dependently generate q values. Fig. S3 shows the results of re-
peating the simulations shown in Fig. 2 in the main text, but now
using this local mutation kernel γ = 50. We see qualitative agree-
ment: Across a wide range of w and u values, we observe average
q> 0 and p> q. Thus, our results are robust to the use of a local
mutation kernel.
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Fig. S1. For u= 10−3, u= 10−2, and u= 10−1, respectively, and for N= 100, we show frequencies of ½p;q� pairs over 108 generations, binned in increments of 0.1.
The most common bin is indicated with a black ×.
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Fig. S2. Local mutation kernel probability density functions for parent p*, using γ = 50.
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Fig. S3. Agent-based simulation results using local mutation with γ = 50. Shown are time-averaged values of p and q over 108 generations, using population
N= 100 and (A) u= 10−3, (B) u= 10−2, and (C) u= 10−1.
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Fig. S4. Mean values of offers by player 1, p (blue), and minimum amount demanded by player 2, q (red), are shown from data (A) and evolutionary agent-
based simulations (B) Observations are sorted by q value. (A) Data as presented in refs. 1–7. (B) All simulations with 0:3<p< 0:5 and 0:2<q< 0:35 are shown,
from the set of mutation rate u= ½10−3; 10−1� and selection strength w in log-scaled increments of 0.1. Simulations use population size N= 100, and show time-
averaged values of p and q over 108 generations. Fig. 2 in main text shows a systemic exploration of the relationship between u, w, and the average strategy.
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Fig. S5. Agent-based simulation results using global mutation (as in the main text) but varying the population size N. Shown are time-averaged values of p
and q over 108 generations, using mutation rate u= 0:01 and (A) N= 50, (B) N= 200, and (C) N= 1000.
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Fig. S6. Distribution of offers p (A) and demands q (B) for N= 100, u= 0:01, andw = 10−0:8. This is an alternative method of presenting the data shown in Fig. 1
in main text: here, p and q distributions are shown separately, rather than showing the joint ½p;q� distribution as is done in Fig. 1 in main text.

Table S1. Expected number of different strategies coexisting in
the population

Nu N=100 N=1; 000 N=10; 000

10 26.0417 47.0201 69.6545
1 5.22322 7.49132 9.78842
0.1 1.50298 1.73318 1.96342
0.01 1.05162 1.07468 1.09771
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