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abstract: How should we measure the relative selective advantage
of different behavioral strategies? The various approaches to this
question have fallen into one of the following categories: the fixation
probability of a mutant allele in a wild type population, some mea-
sures of gene frequency and gene frequency change, and a formu-
lation of the inclusive fitness effect. Countless theoretical studies have
examined the relationship between these approaches, and it has gen-
erally been thought that, under standard simplifying assumptions,
they yield equivalent results. Most of this theoretical work, however,
has assumed homogeneity of the population interaction structure—
that is, that all individuals are equivalent. We explore the question
of selective advantage in a general (heterogeneous) population and
show that, although appropriate measures of fixation probability and
gene frequency change are equivalent, they are not, in general, equiv-
alent to the inclusive fitness effect. The latter does not reflect effects
of selection acting via mutation, which can arise on heterogeneous
structures, even for low mutation. Our theoretical framework pro-
vides a transparent analysis of the different biological factors at work
in the comparison of these fitness measures and suggests that their
theoretical and empirical use needs to be revised and carefully
grounded in a more general theory.

Keywords: evolutionary game theory, heterogeneous networks, fixa-
tion probability, gene frequency change, inclusive fitness.

Introduction

Ever since Darwin’s work, evolutionary biologists have
fastened their attention on understanding the factors that
cause interacting genetic traits to increase or decrease in
frequency. Starting in the middle of the twentieth century,
the bulk of theoretical work in this area focused on social
traits, those whose expression affects the fitness of neigh-
bors, particularly those neighbors who might also be car-
rying the genes responsible for the trait. Two of the prin-
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ciple architects of this program are Bill Hamilton (1964)
and John Maynard Smith (1982), and their concepts of
inclusive fitness and evolutionary game theory give sig-
nificant shape to the thinking of biologists today.

The right way to measure the relative fitness of a given
social behavior has, however, remained a matter of con-
tention among evolutionary biologists, and even recently,
this question has sparked heated debate in the context of
the evolution of eusociality (Doebeli 2010; Nowak et al.
2010; van Veelen et al. 2010; Abbott et al. 2011; Ferriere
and Michod 2011).

This question needs to be answered in the context of a
more or less precise model, and there are a variety of such
models that have been developed. To make analytical prog-
ress, one needs a model that simplifies greatly the biolog-
ical world, and a standard current approach is the one we
adopt in this article—that the behavior is determined by
a gene at a single locus at which mutation is rare enough
that we need take account of only two alleles acting in the
population at any particular time. We call this low mu-
tation. In addition, because of the social nature of the trait,
we need a precise population structure that allows us to
keep track of interactions and offspring movements; for
this, we use a graph structure (Killingback and Doebeli
1996; Hauert and Doebeli 2004; Ohtsuki et al. 2006; Taylor
et al. 2007a). This is not as restrictive an assumption as
one might suppose, as most of the standard population
structures—for example, Wright’s (1943) island model—
can be modeled as finite or infinite graphs. In this article,
we focus on finite populations, where the dynamics is
governed by an interplay of selection, mutation, and drift.
The populations are represented as finite graphs—a finite
set of nodes, each occupied by a single asexual haploid
breeder, together with a specification of two kinds of con-
nections between nodes: the probability that two breeders
will interact and the probability that an offspring of one
breeder will displace another breeder. The graph is called
homogeneous or transitive (Taylor et al. 2007a) if it looks
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the same from every node (i.e., all locations are equiva-
lent). A special case of such a population structure is the
well-mixed, panmictic population. Otherwise, the graph
is called heterogeneous.

It is worth noting that in early behavioral models, the
heterogeneity was typically generated by different roles
(classes)—males and females, adults and juveniles, parents
and helpers—and often the behavior studied and the pro-
duction of offspring were restricted to certain classes,
though they could affect the fitness of all classes. To some
extent, our graph structure can accommodate such roles
using nodes of different types. Not every type of node
need play the game or have offspring. One thing we have
not explicitly done is provide a mechanism for individuals
to move from one node to another (e.g., to change classes),
as happens in an age-structured model, though this is often
modeled by having the individual be an offspring of itself.
Another interpretation of heterogeneity would allow a
neutral variation in fecundity among nodes (e.g., a pop-
ulation along a resource cline). We have not built this into
our model, but we suspect that an analogue of our model
for such a population would show behavior comparable
to that found in the results of this work. The heterogeneity
in our model stems from the relationship of a node to the
population-wide specification of breeder interactions and
offspring dispersal, and the class structure is determined
by that. Heterogeneous populations, which constitute the
focus of our article, are not only the norm in nature, but
in the very special cases where they have been analytically
tractable, they have shown interesting and unexpected be-
havior (Lieberman et al. 2005; Frean et al. 2013).

In each time interval (called an update step), individuals
interact with partners determined by the population struc-
ture employing one of two strategies, A or B, determined
genetically at a single locus by alleles A and B. A very
slightly modified analysis can be employed for more than
two strategies (e.g., Tarnita et al. 2011), but here, for sim-
plicity of exposition, we focus on two. The result of the
interactions between individuals is captured in the form
of a general game with a given payoff matrix, and fitness
depends on the payoff accumulated. As a consequence of
the update step, the nodes change their strategies (through
offspring replacement), but typically the underlying graph
connections remain fixed (Lieberman et al. 2005; Ohtsuki
et al. 2006; Taylor et al. 2007a), and in this case, we call
the graph structure static. If the node connections can
change as well, we call the structure dynamic. In the latter
case, the definitions of homogeneity and heterogeneity dis-
cussed above do not immediately hold, since the structure
evolves through different states. Some of our results can
apply for such dynamical networks (Antal et al. 2009; Tar-
nita et al. 2009a; Taylor and Grafen 2010); however, our

main results hold for fixed structures, and those will be
the focus of our article.

In this context, our question becomes, how are we to
measure the effect of selection on allele frequency? In the
recent finite population literature, four different measures
have been proposed. The first approach is based on the
comparison of fixation probabilities, the second on as-
sessing the effect of the mutation-selection process on the
stationary equilibrium gene frequency, the third on the
expected one-step selective change in gene frequency in
the limit of low mutation, and the fourth, in the limit of
low mutation and weak selection, on the one-step change
in reproductive value (RV)-weighted gene frequency at the
neutral stationary equilibrium. Under additional assump-
tions, this fourth measure turns out to be equivalent to
the inclusive fitness effect. In “Model, Measures, and Over-
view of Results” below, we introduce and discuss each of
these measures.

There are a number of studies that give precise con-
ditions for the equivalence of these approaches (Rousset
and Billiard 2000; Taylor et al. 2007b; app. A in Nowak
et al. 2010), and two critical assumptions, made clear in
these studies, are that the effects of selection are small
(“weak” selection) and that the population structure is
homogeneous (or transitive; Taylor et al. 2007a), which
implies that individuals are more or less equivalent. In
fact, in most of the literature studying these questions, this
homogeneity is taken for granted, as evidenced by the use
of terms such as “typical,” “arbitrary,” or “focal” to de-
scribe an individual. And a number of recent publications
refer explicitly to the equivalence of these properties with-
out any mention of this assumption (Grafen 2009; Wakano
and Lehmann 2012; West and Gardner 2013).

It is not our purpose to be critical of this. In Grafen
(2009), the author himself distinguishes between the gold
and plastic standards of precision in modeling and points
out that the literature needs both, one to be rigorous and
the other to be useful. After all, there are no homogenous
populations out there, and fitness effects are rarely weak,
seldom additive. But the four measures we refer to above
are the fundamental approaches that we all use to get hold
of the effects of selection, and at some point, we need to
have a precise, general, and rigorous understanding of their
relationship with one another; in the absence of such an
understanding, the plastic standard can lead to misleading
results.

Our purpose in this article is to review the four fitness
measures and to provide a transparent analysis of the dif-
ferent biological factors at work in their comparison. We
first develop a general framework that makes heteroge-
neous networks analytically tractable (“Model, Measures,
and Overview of Results”). We illustrate our results with
a simple example of heterogeneous structures that shows
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that the four measures are not, in general, equivalent
(“Example: The Star Graph”). It emerges then that in het-
erogeneous populations, while there is a broad equivalence
between the first three measures described (fixation prob-
ability, stationary gene frequency, and stationary one-step
change in gene frequency), there is not, in general, an
equivalence between all four, and the relationship between
the first three and the last is quite sensitive to model
assumptions.

Model, Measures, and Overview of Results

We consider a population of N individuals, each being one
of two types, A or B. The genotype xi of node i is defined
to be 1 if individual i bears allele (has strategy) A and 0
if it bears allele B. A state S of the population is a spec-
ification of the genotypic values xi for all nodes. Individuals
interact according to the general matrix

A B

(1)A a b
.( )B c d

As a result of these interactions, individual i receives a
payoff , which contributes to its effective payoffe f pi i

. Here, d is the selection coefficient. The limit of1 ! dei

weak selection is d r 0; when d p 0, the process is neutral.
Individual birthrates bi (fecundity) and death rates di

(mortality) are functions of the set of effective payoffs.
During each time interval, after the game is played, an

update occurs. Our analysis applies to any kind of update
rule, as long as it is well behaved in the limit of weak
selection (i.e., the transition probabilities between states
are continuous and differentiable at d p 0) and the total
birthrate is the same in each of the two pure states (all A
and all B). Examples of such processes are the Moran
process, with either birth-death or death-birth updating
(Moran 1962; Ohtsuki et al. 2006), in which at the end
of each time interval, exactly one individual dies and one
individual reproduces, and the Wright-Fisher process (Im-
hof and Nowak 2006), in which, at the end of each time
interval, all individuals die and the new generation is sam-
pled from their offspring.

Reproduction occurs with errors, and we consider an
asymmetric mutation rate. Thus, when an individual re-
produces, it does so accurately with probability 1 " u;
with probability u, its offspring mutates and adopts strat-
egy A with probability p and strategy B with probability
1 " p. In this article, we are concerned with the limit of
low mutation, u K (1/N); in this limit, a new mutant
either takes over the population or goes extinct before the
next mutation event. Stable polymorphism is not possible
in our finite population model, because as long as mu-

tation is nonzero, no states are absorbing; moreover, when
mutation is zero, the only absorbing states are the pure
all-A and all-B states. Next, we discuss the four measures
of selection employed to study strategy selection.

Measure 1: Comparison of Fixation Probabilities

The first measure is based on the comparison of fixation
probabilities (Kimura 1962; Karlin and Taylor 1975). The
fixation probability of an allele A is the probability that a
single A player in an otherwise B population will eventually
take over the population (with no mutation). To account
for the fact that A players placed at different locations on
a structure might have different fixation probabilities, we
define rA,i to be the fixation probability of an A placed at
node i in a population of B players. If a structure is ho-
mogeneous, then every position is effectively identical, and
hence, a mutant has the same likelihood of appearing on
any location. On a heterogeneous graph, however, locations
are different, and calculating a total fixation probability is
less straightforward. Mutants do not appear at random at
every location, but instead there is a mutant appearance
distribution, as discussed in Allen and Tarnita (2014). Such
a distribution captures the probability that the first mutant
appears at a given node and gives us the expression r pA

. This is our gen-! Pr (first mutant arises at location i)rA,ii

eral definition of fixation probability. Then a measure that
strategy A is selected over strategy B is

r 1 r . (2)A B

Measure 2: Stationary Equilibrium Gene Frequency

The second measure of selective success relies on assessing
the effect of the mutation-selection process on the stationary
equilibrium gene frequency. Let xi,S denote the genotype of
node i in state S; then the frequency of gene A in state S
is . Since the frequency of A varies fromx p (1/N) ! xS i,Si

state to state, we use as a measure the long-term average
of the state frequencies (Rousset and Billiard 2000). For
fixed mutation rate u and selection strength d, the state
frequency distribution will attain a long-term equilibrium
with average allele frequency , whereAxS p ! x p (u, d)S S

Sis the frequency of state S at this equilibrium.p (u, d)S

The angle brackets A7S represent the average taken over
all population states, with state frequencies determined by
the mutation-selection equilibrium. In what follows, we
will drop the S to simplify the notation. In the absence of
selection, we let AxS0 denote the average allele frequency at
the neutral equilibrium and take our measure of the se-
lective advantage of allele A to be the difference AxS " AxS0.
This measures the change in the long-term allele frequency
as we move from the neutral equilibrium to the new equi-
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librium, which balances mutation, drift, and selection. The
neutral frequency AxS0 is easily seen to be p, determined
by the effect of the asymmetric mutation (Taylor et. al
2007b). So the second measure of strategy success is

AxS 1 p. (3)

This condition is meant to apply to any structure and any
intensity of selection and mutation.

Measure 3: Stationary Equilibrium One-Step
Selective Change in Gene Frequency

The third measure of selective success is the classic measure
from population genetics (Ewens 1969; Wright 1969; Crow
and Kimura 1970), the expected one-step selective change
in gene frequency. In a wide variety of population models,
it has taken many forms; in our simple model, in a given
state S and under the assumption that individuals breed
true, the change due only to selection in the frequency of
A individuals is . Again, inselD x p (1/N) ! x (b " d )S S i,S i,S i,Si

what follows, we will drop the S to simplify the notation.
Since this quantity also changes between states, we employ
the same long-term average, and the third measure of the
selective advantage of A is that the stationary average one-
step selective change is positive:

selADx S 1 0. (4)

To relate this to the first two measures, we observe that
at the mutation-selection equilibrium, the overall average
one-step change in gene frequency will be zero. We write
this total change as a sum of its two components, due to
selection and to mutation

tot sel mut0 p ADx S p ADx S " ADx S, (5)

where we have taken the second term to be the negative
change of A frequency due to mutation. This gives us the
equilibrium equality ADxselS p ADxmutS representing the bal-
ance between selection and mutation. At the neutral equi-
librium (i.e., in the absence of selection, d p 0), not only
is the total change zero, but each of its two components,
due to selection and due to mutation, is zero. However,
in moving to the mutation-selection equilibrium, both
components become nonzero. Thus, the mutation term
should really be described as the effect of selection on the
change due to mutation. Since we are concerned with the
limit of low mutation and the frequency of mixed states
is of order u, the rate at which mutation negatively affects
the frequency of A is the difference between the rate at
which it generates new copies of B in the all-A state (which
is u(1 " p)b) and the rate at which it generates new copies
of A in the all-B state (which is upb), where b is the average
fecundity (assumed above to be the same in the two pure
states). Thus, at low mutation,

mutADx S p ub[(1 " p)p " pp ]1 0 (6)

p ub[p " p] p ub[lim AxS " p],1
ur0

where p0 and p1 are the frequencies of the pure states at
the long-term equilibrium and the last two equalities are
due to the fact that at low mutation, p0 ! p1 p 1 and
AxS p p1.

Using the relationship between the change due to se-
lection and the change due to mutation given by (5), we
are now able to formulate the equivalence of the first three
measures of selective advantage, which, in the limit of low
mutation, holds for any population structure, any intensity
of selection, and any update rule for which the average
birthrate is the same in each of the two pure states (as
assumed above),

sel (u)r 1 r ⇔ lim AxS 1 p ⇔ ADx S 1 0. (7)A B
ur0

Here and henceforth, h(y) represents the coefficient of the
linear term in the Taylor expansion of function h with
respect to y. Both these equivalences have been shown
previously—the former in Taylor et al. (2007b), equation
(4.2), and Allen and Tarnita (2014) and the latter, in var-
ious forms, in Rousset and Billiard (2000) and appendix
A in Nowak et al. (2010)—but here we extend those results
to a larger class of processes and give a more straightfor-
ward proof. For details, see appendix A; appendixes A–D
are available online. The significance of these equivalences
is the possibility of using (4), the one-step selective change,
to calculate the other two measures. Indeed, (4) can in
principle be calculated from selective effects on the fitness
of the different nodes, and this can be obtained from the
effective payoffs and the pattern of offspring dispersal. In
fact, the theory of inclusive fitness was designed to do
exactly that. The difficulty, however, is that the calculation
of the average change requires knowledge of the state dis-
tribution, and this is hard to get hold of when selection
is acting, even in simple population models. It is this that
has focused much of the theoretical work on the limit of
weak selection, and the measure that has proven most
receptive to this approach is the one-step selective change.

Measure 4 (Weak Selection, Homogeneous Structures):
Neutral Stationary Equilibrium One-Step

Selective Change in Gene Frequency

In the absence of selection, the term ADxselS is zero. More-
over, selection acts on it in two ways: first, through its
effect on allele fitness in each state and, second, through
its effect on the distribution of states. We can thus write,
to first order, the effect of selection on the one-step change
in gene frequency as
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sel (d) sel (0) selADx S p d(AD x S ! AD x S ). (8)0 d

The first term above is the effect of individual fitness in
each state averaged over the neutral distribution (denoted
by A7S0); the second term accounts for the effect of selection
on the equilibrium distribution of states (denoted by A7Sd).
Since the neutral distribution is generally accessible, what
we can feasibly calculate is the first of these, . One(d) selAD x S0

way to think of this term is to imagine two competing
alleles with identical phenotypic effects at frequency equi-
librium under bidirectional mutation. Then an environ-
mental change causes a phenotypic difference between
them, and we measure the one-step change in the fre-
quency of the focal allele, starting at its neutral equilibrium
frequency distribution. But what about the second term
above? It turns out that in a homogeneous population,
the second term is zero, because in every state, the birth-
rates and death rates of every individual are the same at
neutrality. Therefore, this has led to the widely used weak
selection and low mutation measure of selective advantage

(d) sel u( )AD x S 1 0. (9)0

But what about heterogeneous populations? It turns out
that in a heterogeneous population, some nodes can have
a higher fitness than others even at neutrality, and in a
state in which those are the nodes that carry A, the one-
step change in gene frequency will be positive: AD(0)xselS 1

0. (In the star graph discussed in “Example: The Star
Graph,” the leaves have a higher fitness than the hub.) As
a result of this, a perturbation of the state frequencies can
affect the long-term average one-step change in allele fre-
quency, and the last term in (8) can be nonzero. Therefore,
in heterogeneous populations, (9) is not, in general, equiv-
alent to the conditions in (7). The next measure we discuss
makes ingenious use of the classic notion of reproductive
value to handle the nonzero term in (8) for heterogeneous
populations.

Measure 4 (Weak Selection, Heterogeneous Structures):
Neutral Equilibrium One-Step Selective Change

in RV-Weighted Gene Frequency

The problem we encountered above derived from a var-
iation in fitness among the nodes of a heterogeneous net-
work, even at neutrality. This can be fixed by assigning
weights to the nodes so that, at neutrality, they all have
the same weighted fitness—that is, at each node, the
weighted birthrate and death rate will be equal. The
weights that satisfy this have been described before (Taylor
1990, 2009; Leturque and Rousset 2002) and have been
called reproductive values by analogy with Fisher (1930).
Let vi be the weight of node i. Then the weighted death
rate and birthrate of node i are given by andd̂ p d vi i i

, where pij is the probability that an off-
N

b̂ p b ! p vi i ij jjp1

spring of individual i colonizes location j. Then the vi are
determined up to a multiplicative constant by the con-
dition that the weighted birthrate and death rateˆ ˆd p bi i

are equal at neutrality for any node i. The classic notion
of RV (Fisher 1930) is the long-term contribution of the
node-i individual to the population; at equilibrium, the
expected one-step increase in this contribution (through
birth) must equal its expected decrease (through death),
and that gives us exactly the condition . Therefore,ˆ ˆd p bi i

the two notions (the one used in this article and the classic
notion of RV) are identical and generated by the same
condition.

For homogeneous populations, all nodes have the same
reproductive value (and we take vi p 1 for all i). However,
for heterogeneous populations, this will not typically be
the case, and we work instead with the RV-weighted gene
frequency. Therefore, for heterogeneous populations, the
neutral average selective change in RV-weighted gene fre-
quency will have the form , where(d) selˆ ˆAD x S x p0

. We use the caret to differentiate between theˆ ˆ! x (b " d )i i ii

unweighted and weighted measures, where there is a po-
tential that they might be different. The detailed discussion
of this RV-modified quantity and its relationship to the
previous measures is provided in appendix B. The RV-
weighted analogue of (8) becomes

sel (d) sel (0) selˆ ˆ ˆADx S p d(AD x S ! AD x S ), (10)0 d

and the effect of the RV weighting is, as under homoge-
neity, to make equal to zero in every state so that(0) selˆD x

; we thus recover the analogue of (9)sel (d) (d) selˆ ˆADx S p AD x S0

for heterogeneous populations,

(d) sel u( )ˆAD x S 1 0. (11)0

For a homogeneous population, this measure becomes
equivalent to the one in (9). In general, according to the
existing literature, we take (11) to be the fourth measure
of the selective advantage of A.

Whereas we (and others before; see Rousset and Billiard
2000; Nowak et al. 2010) have already established above
the equivalence of the four measures for homogeneous
populations, we claim that the fourth measure is, contrary
to expectations, not equivalent to the first three for general
heterogeneous structures and that, therefore, it does not
provide, in general, a measure for the selective advantage
of a strategy. To understand this, we attempt to reproduce
the argument above with an RV weighting. First of all, the
analogue of (5) holds and gives . Fromsel mutˆ ˆADx S p ADx S
there, the argument leading to (6) requires average fecun-
dity to be the same in each of the two pure states. However,
this need not be the case for RV-weighted fecundity, and
if we use and to represent average fecundity in theˆ ˆb b0 1
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pure states (all B and all A) and to be the average fe-b̂
cundity at neutrality (which is independent of state), then
the analogue of (6) is

mut (d) (d) (d)ˆ ˆ ˆˆADx S p du p(1 " p)(b " b ) ! b lim (AxS " p) .[ ]1 0\
ur0

additional term

(12)

This new mutation-selection term contains an additional
quantity that reflects the fact that, in a heterogeneous pop-
ulation, the probability of being displaced by an offspring
can vary among nodes. For example, in the neutral star
graph with birth-death (BD) updating described in “Ex-
ample: The Star Graph” below, the hub receives new off-
spring at four times the rate of a leaf. Since we model
mutation as occurring in new offspring, mutants will arrive
at different nodes—and, therefore, with different repro-
ductive values—at different rates. When we turn selection
on, it can further perturb this effect and provide a new
component of allele-frequency change, which we will refer
to as the effect of selection through mutation. Therefore,
the correct weak selection and low mutation measure for
heterogeneous structures is

(d) sel u (d) (d)( ) ˆ ˆˆAD x S 1 p(1 " p)(b " b ), (13)0 1 0

and this is the main contribution of our article. For a
homogeneous population, the additional term is always
zero since the RVs are identical for all locations and, in
that case, we recover the known results. In heterogeneous
populations, however, the use of RV succeeds in simpli-
fying the selection term and allows its calculation at weak
selection; but, at the same time, it complicates the
mutation-selection term and ultimately gives us an extra
term that derives from the differential fecundity among
nodes, even in the absence of selection. One important
final remark is that the use of the RV transformation pro-
vides a correct measure only for weak selection. Repro-
ductive values are calculated in the neutral population,
and away from weak selection, the RV-weighted terms will
generally not give the same results as their nonweighted
counterparts. Therefore, away from weak selection, the
correct result that holds for any population structure is
the one given by (3), without any modification.

Measure 4 ′: Inclusive Fitness

Hamilton (1964) suggested that, under certain conditions,
the neutral selective change in allele frequency can be writ-
ten as a weighted sum of fitness effects, where the weights
are the relatedness of the actor to the individuals whose
fitness is affected by the behavior. To be more precise, take
a focal actor and tabulate the fitness effects on all indi-

viduals of the change in the behavior resulting from a
genetic change from B to A in the actor. Then the inclusive
fitness (IF) effect of A is defined as the sum of these
weighted effects over all individuals i, each effectêi

weighted by the relatedness of the actor to the0R p Ri i

affected individual (the recipient): . We give0̂ ˆW p ! e RIF i ii

R the superscript 0 to emphasize that it is generally un-
derstood that the relatedness coefficients, which are mea-
sures of genetic similarity, are calculated at the neutral
equilibrium, it being generally infeasible to calculate them
when selection is acting. Hamilton (1964) himself sug-
gested that these neutral relatedness coefficients should
give “a good approximation to the truth when selection
is slow” (p. 4). Indeed, a number of subsequent studies
with various modeling approaches (e.g., Charlesworth and
Charnov 1981; Taylor 1990, 2009; Rousset and Billiard
2000; Taylor et al. 2007b; Nowak et al. 2010; Wakano et
al. 2013) have shown that under certain conditions (e.g.,
weak selection, low mutation, additive pairwise games, ad-
ditive fitness effects between actors), the inclusive fitness
effect has the same sign as and is proportional to the
neutral first-order one-step change in RV-weighted gene
frequency:

(d) sel (u)̂ ˆW ∝ AD x S . (14)IF 0

This is why we do not treat inclusive fitness as a separate
measure but rather as a variant of the fourth measure
presented above. With the use of neutral relatedness co-
efficients, explicitly calculates the neutral RV-weightedŴIF

average one-step selective change . It should be(d) selˆAD x S0

mentioned that Hamilton (1964) did not explicitly incor-
porate reproductive value in his fitness expressions, and
the discussion there was (often implicitly) in the context
of a homogeneous population. In his work with altruistic
behavior in a haplodiploid genetic system, Hamilton
(1972) emphasized the importance of using these RV
weights and proposed incorporating them in the relat-
edness coefficients, producing what he called “life-for-life”
coefficients. In Hamilton (1972) and subsequent work
with genetic asymmetries and with age structure (e.g.,
Charlesworth and Charnov 1981; Taylor 1990), the use of
reproductive value as the correct weighting for fitness was
justified with the idea that it is the long-term fitness of
the allele that matters, and, in fact, that was how repro-
ductive value was (and still is) defined and regarded. But
our treatment of RV above gives an alternative way to
regard its role.

Since we show that does not provide a correct(d) sel (u)ˆAD x S0

(or rather a complete) measure of selective advantage for
general heterogeneous populations, it is implied that the
same holds true for inclusive fitness. Thus, instead of the
familiar measure of selective advantage
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Table 1: Table of equivalences between the five measures

Measure

Low mutation,
any selection,
any structure

Low mutation,
weak selection,
homogeneous

Low mutation,
weak selection,
any structure

1. Fixation probabilities rA 1 rB
(d) (d)r 1 rA B

(d) (d)r 1 rA B

2. Stationary gene frequency lim AxS 1 pur0
(d)lim (AxS " p) 1 0ur0

(d)lim (AxS " p) 1 0ur0

3. Stationary gene frequency change sel (u)ADx S 1 0 sel (du)ADx S 1 0 sel (du)ADx S 1 0
4. Neutral stationary frequency change ... (d) sel (u)AD x S 1 00 Incomplete: (d) sel (u)ˆAD x S 1 00

Complete: (d) sel (u) (d) (d)ˆ ˆˆAD x S 1 p(1 " p)(b " b )0 1 0

4′. Inclusive fitness ... WIF 1 0 Incomplete: Ŵ 1 0IF

Complete: (d) (d)ˆ ˆŴ 1 (b " b )IF 1 0

Note: Rows correspond to the five measures discussed, where we consider the last two to be identical (under the assumptions specified in the text).
Columns give the equivalences of the four measures under the conditions specified at the top of each column. We use “Incomplete” to refer to the
existing measures employed in the literature that we show to be not generally equivalent to the other measures. We use “Complete” to refer to the
correct measures, as derived in this article. We do not specify what measures 4 and 4′ look like when selection need not be weak; definitions of the
inclusive fitness effect for any intensity of selection have been proposed, but they are not standard in the literature and they do not represent the focus
of our article.

Ŵ 1 0, (15)IF

the correct measure contains the extra term reflecting the
effect of mutation via selection:

(d) (d)ˆ ˆŴ 1 (b " b ). (16)IF 1 0

These results are summarized in table 1, and the notations
used are recorded in table 2.

Example: The Star Graph

We start by analyzing one of the simplest examples of
heterogeneous structure, the N-star graph, which will be
sufficient to exemplify the discrepancies between the four
measures. The N-star graph has one central node called
the “hub” and N " 1 peripheral nodes called the “leaves.”
We identify two classes of nodes denoted by H (hub) and
L (leaf). The hub has degree N " 1 since it is connected
to all the leaves, while the leaves have degree 1 since they
are only connected to the hub (fig. 1). We adopt the con-
vention common in evolutionary graph theory (Lieberman
et al. 2005; Ohtsuki et al. 2006; Taylor et al. 2007a) that
the connection edges indicate interactions as well as off-
spring dispersal, and we consider all edges to be weighted
equally. The payoff of an individual is the total accumu-
lated from all its interactions (the more neighbors a node
has, the more interactions it will have; fig. 1B). In this
section, we focus on the Moran process with BD updating
and fecundity payoffs—an individual is picked to repro-
duce proportional to its effective payoff, and the offspring
replaces one of the parent’s neighbors at random. Below,
we study strategy dominance on the star graph using the
fixation probability and the inclusive fitness approaches.
For simplicity, we show only the calculation for a three-

star graph. This case captures all the aspects of hetero-
geneity that we are concerned with in this work.

Fixation Probabilities

On a heterogeneous network, different locations can have
different probabilities for the first mutant to arise at that
location. On a three-star graph with BD updating and an
all-B population, the probability that the first A mutant
arises at the hub is the probability that one of the neighbors
of the hub is chosen to reproduce times the probability
that it reproduces into the hub. The probability that the
first A mutant arises at a given leaf is similarly the prob-
ability that the hub reproduces times the probability that
its offspring replaces that leaf. We find

1 ! dd
Pr (first mutant at H) p 2 ,

3 ! 4dd (17)

1 1 ! 2dd
Pr (first mutant at L) p .

2 3 ! 4dd

Note that not only is this not a uniform distribution but
that, moreover, the appearance probabilities depend on
the payoff d of the resident population. This has interesting
implications. For example, the probability that the mutant
arises at the hub is a decreasing function of the payoff d.
This means that the higher the payoff of the resident pop-
ulation, the less likely it will be for the first mutant to
arise on the hub. Hence, for heterogeneous populations,
the mutant appearance distribution is not independent of
payoffs (as is the case for homogeneous populations), and
this will influence strategy selection. This, together with
the fact that, even at neutrality, a mutant is four times
more likely to arise at the hub than at the leaves, will be
the crucial element that allows selection to operate via
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Figure 1: a, Nine-star graph; black p strategy A; gray p strategy
B. b, Examples of different states of a three-star graph showing the
payoffs . The payoff of an individual is the total accumulated fromei

all its interactions. Upper state is BBA; lower state is BAB. The
numbers represent the locations (indexes) of the individuals.

Table 2: Notations used in the text

Notation Definition

N Fixed population size
d Selection coefficient; d p 0 is neutrality; d r 0 is weak selection
u Mutation rate
p Probability that mutation results in A offspring; 1 " p is probability that mutation results in B offspring
S State of the population
xi Genotype of individual i; xi p 1 or 0 (if strategy of node i is A or B)
x Gene frequency, or average genotypic value of the nodes, in a state
vi Reproductive value (RV) of node i
ei Payoff of individual on node i in a state
fi ; effective payoff of individual on node i in a state1 ! dei

e Total payoff of the population in a state
F Total effective payoff of the population in a state
rA Fixation probability of an A mutant in a population of B
rA,i Fixation probability of an A mutant placed on node i in a population of B
bi, ( )b̂i (RV-weighted) birthrate of individual on node i in a state
di, ( )d̂i (RV-weighted) death rate of individual on node i in state S
pij Probability that an offspring of individual i colonizes location j
bS ( )b̂S Average (RV-weighted) birthrate in state S
p (u, d)S Probability that the system is in state S at equilibrium; depends on game and mutation rate
DSx

sel, (DS )selx̂ Change in (RV-weighted) gene frequency due to selection in state S
DSx

mut, (DS )mutx̂ Change in (RV-weighted) gene frequency due to mutation in state S
DSx

tot, (DS )totx̂ Total change in (RV-weighted) gene frequency in state S
h(y) Coefficient of the linear term of the Taylor expansion of function h with respect to y
A7S Average over the stationary distribution
A7S0 Neutral stationary average (i.e., in the absence of selection, d p 0)
Gij Probability i and j are identical by descent
WIF Inclusive fitness effect
ŴIF RV-modified average inclusive fitness effect

mutation even when mutation is weak and leads to the
discrepancies between the measures of selection.

Next, we calculate the total fixation probability. The
fixation probabilities from any location on the star have
been calculated already (Tarnita et al. 2009b; app. A) and,
together with the mutant appearance distribution above,
in the limit of weak selection yield

r p Pr (first mutant at H)r ! 2 Pr (first mutant at L)rA A,H A,L (18)

2 4 7 8
p 2 ! d a ! 3b " c " d .[ ( )]15 5 3 15

The probability rB that a B mutant fixates into a population
of otherwise A players can be obtained by symmetry from
the above. Then the condition for strategy A to be dom-
inant over strategy B is given by , which is equiv-(d) (d)r 1 rA B

alent to a ! 4b 1 4c ! d. For the simplified prisoner’s
dilemma, with benefit B and cost C, the condition that
cooperation is favored over defection becomes

"3B " 5C 1 0. (19)

Since B 1 C 1 0, it is implied that cooperation is never
favored on a three-star graph with BD updating.

Inclusive Fitness

When the population has different classes of actors, we
take a focal individual in each class and calculate the in-
clusive fitness effect of its behavior, weighting fitness effects
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by reproductive value (Taylor 2009). Thus, a breeder’s
death is weighted by the RV of the node it leaves, and a
new offspring is weighted by the RV of the node it arrives
at. Having calculated these class-specific effects, one for
each actor class, the overall inclusive fitness effect is their
weighted sum, with each class weighted by the class size
(Taylor and Frank 1996). Thus, in the case of the star,
having calculated and for the hub actor̂ ̂W (H) W (L)IF IF

(interacting with both leaves) and for a leaf actor (inter-
acting with the hub), the overall inclusive-fitness effect is
the weighted sum of these class-specific effects, with class
sizes as weights, .̂ ̂ ̂W p W (H) ! 2W (L)IF IF IF

It is worth noting that each fitness effect is the sum of
terms with a simple structure (Taylor 2009). A typical
fitness component of a focal actor i will change the prob-
ability that an offspring from node j will displace the
breeder on node k. The corresponding term will have the
form evk(Gij " Gik), where e is the fitness effect (the change
in probability), vk is the RV of node k, and Gij is the
probability that nodes i and j are identical by descent at
neutrality. We will use these identity-by-descent proba-
bilities as relatedness coefficients (see apps. C and D).
Following this structure, the inclusive fitness effect of the
hub 0 (giving benefit B to each leaf at cost C) and of the
left leaf actor (giving benefit B to the hub at cost C) are
expressed as

1 C C
Ŵ (H) p 2 Bv (G " G ) " v (G " G ) " v (G " G ) ,IF 0 01 00 1 00 01 2 00 02[ ]9 2 2

1 B B
Ŵ (L) p v (G " G ) ! v (G " G ) " Cv (G " G ) .IF 1 10 11 2 10 12 0 11 10[ ]9 2 2

(20)

The 2 in the calculation of comes from the factŴ (H)IF

that the hub has two symmetric interactions, one with
each leaf. Notice that we have partitioned any fecundity
effect on the hub into two components, as the resulting
offspring can go to either leaf. These can readily be com-
bined into one, but we keep them separate here for clarity.
Note also the factor 1/9 (which is (1/N)2) in each term.
This is a normalizing factor that most inclusive fitness
analyses would omit, but it is required if we want our
expression to provide the right measure of gene frequency
change. First, the fecundity increments B and C are ef-
fective only when the recipient is chosen to reproduce and
the probability of that is 1/N. Second, the increments B
and C, if effective, count extra A alleles. To translate this
into extra A frequency, a second division by N is required.

In appendix D, the G coefficients are calculated for low
mutation to be , ,G p G p 1 " 7u/3 G p 1 " 10u/301 02 12

and, of course, . From the definition of RV,G p G p 100 11

we conclude that v2 p v1 p 2v0, so we pick v0 p 1 and
. Using all these values together, we get thev p v p 21 2

overall inclusive fitness effects to be ̂ ̂W p W (H) !IF IF

, and thus the condition that2̂W (L) p 2("11B " 21C)/27IF

the inclusive fitness effect is positive becomes

"11B " 21C 1 0. (21)

Understanding the Star Example

The inclusive fitness condition (21) is not identical to the
fixation probabilities condition (19), which shows that, for
heterogeneous populations, the last measure of selective
advantage is not necessarily equivalent to the first three.
What does the inclusive fitness effect calculate then, and
where does the discrepancy come from? Take a fixed pop-
ulation state—for example, state BBA (upper state in fig.
1B). In this state, the total reproductive value of A indi-
viduals (which we will denote by A-RV) is vL (the RV of
a leaf node). Now let selection (in the absence of mutation)
act, and then go one time step and calculate the new
average A-RV. The possibilities for the new state after one
step are BBA, BBB, and BAA, and the new values of A-
RV are vL, 0, and vH ! vL, respectively. The average one-
step increase in A-RV is the average of the differences 0,
"vL, and vH, respectively, weighted by the three transition
probabilities from the old state to each of the possible new
states. That average gives us for the state BAA. Now,(d) selˆD x
make the same calculation for every starting state—there
are six of these, four mixed and two pure, but as we are
ignoring mutation, only the mixed states will yield a non-
zero change—and take the average of these six (in fact
four) changes in A-RV using the neutral mutation-selec-
tion equilibrium state frequencies as weights. What we get
is what we have called , and it is that which(d) sel (u)ˆAD x S0

measures. For the star, this is shown in appendix C.ŴIF

But there are two effects of selection, even when weak,
that does not measure. The first is the effect of selec-ŴIF

tion on the distributions of states (what we have called
), but as we have seen, the use of RV-weighted(0) selˆAD x Sd

fitness effects makes this zero. The second is the effect of
selection on the distribution among nodes of a new mu-
tant, and in a heterogeneous population, this can be dif-
ferent for new A and B alleles, leading to a different RV
for new A and B mutants. This missing term is given by
the right-hand side of (13); in the case of the three star,
it is 2(B " C)/27. Subtracting this from gives theŴIF

equivalent result to that obtained via the comparison of
the fixation probabilities in (19).

Thus, for the three-star graph, the inclusive fitness effect
provides the correct one-step selective change in RV-
weighted allele frequency if the effects of selection acting
through mutation are ignored, but it predicts neither the
relative fixation probabilities nor the relationship between
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the neutral and mutation-selection equilibria and, there-
fore, does not tell the whole story.

Finally, it is worth noting that the additional mutation
term is not always problematic. In this section, we analyzed
the star with a Moran process with BD updating and fe-
cundity payoffs; for a Moran process with death-birth (DB)
updating with fecundity payoffs, the additional mutation
term will always be zero, and we will in this case obtain the
known condition . The argument for this is simple.Ŵ 1 0IF

Under DB updating with uniform survival, the breeder re-
placed in a reproductive event is always chosen at random,
so the average RV of the new offspring is independent of
the effects of selection. Thus, . However, one can(d) (d)ˆ ˆb p b1 0

only know whether the additional mutation term is prob-
lematic after performing the calculation; therefore, one al-
ways has to start the analysis with the generally correct
formulation in (16).

Discussion

In this article, we explore several different measures of
strategy success in an evolutionary process on static, finite
graphs—comparison of fixation probabilities, long-term
average gene frequency, long-term average change in gene
frequency, and a weak selection variant of the latter that
is closely connected to the inclusive fitness effect via the
Price (1970, 1972) equation. While these conditions are
broadly equivalent for homogeneous populations, we
showed that the same is not always true for heterogeneous
structures. In our analysis, the notion of reproductive value
gave us a simple and powerful modification of quantities
used to describe homogeneous populations that permitted
calculations to be made. The idea that, in a heterogeneous
population, measures of fitness and gene frequency change
need to include an RV weighting goes back at least to
Fisher (1930) working with age-structured populations,
and it was perhaps first formally treated in this context
by Charlesworth and Charnov (1981). That same RV no-
tion is used by us here for a different purpose, and that
is to handle the effect of selection on the distribution of
alleles in the limit of weak selection; general treatments of
its use for this purpose go back to Taylor (1990) in infinite
populations and Leturque and Rousset (2002) in finite
population models.

This generalized approach showed that while the first
three measures remain equivalent for any population
structure, the modified neutral selective change in gene
frequency and, implicitly, the inclusive fitness effect are
not sufficient to provide an equivalent measure to the first
three, as is the case in homogeneous (transitive) structures;
an extra term that encompasses effects of selection that
are playing out through mutation is necessary for com-

pleteness. The main result of our article provides the fol-
lowing equivalences:

ur0 ur0 u,dr0selAxS 1 p ⇔ r 1 r ⇔ ADx S 1 0 ⇔A B

(d) sel (u) (d) (d)ˆ ˆˆAD x S 1 p(1 " p)(b " b ) (22)0 1 0

(d) (d)ˆ ˆ̂⇔ W 1 b " b .IF 1 0

The first measure is the most general one, holding for any
mutation strength and selection intensity and for any pop-
ulation structure. The first two equivalences hold for low
mutation. The remaining equivalences hold in the limit
of weak selection; the last of these requires additional as-
sumptions that allow for the formulation of the inclusive
fitness effect. The inclusive fitness effect can be rigorously
formulated for additive two-person games in static pop-
ulation structures (for weak selection and low mutation),
and we have made reference to considerable recent work
(most of which is ongoing) that has focused on extending
its formulation to more complex structures. Indeed, our
result here also represents a step forward in generalizing
the concept of inclusive fitness to static heterogeneous
populations.

Having said that, the last equivalence is certainly of a
different kind than the first three. Inclusive fitness is an
accounting method based on a powerful heuristic concept
that, right from its initial formulation (Hamilton 1964),
has been continuously refined and upgraded to apply (and
deliver its insights) to an increasing set of behavioral mod-
els. But in each new case and each new modeling approach,
it was never clear whether or to what extent the inclusive
fitness formulation would produce the desired gene fre-
quency/fixation outcome and whether it would offer a
computationally feasible approach. For example, we now
understand the modifications of the IF formulation that
will allow it to apply to synergistic games (Queller 1985;
Ohtsuki 2010; Taylor and Maciejewski 2012; Taylor 2013),
and in this article, we have shown how the RV-weighted
IF effect relates in heterogeneous populations to other
standard measures of the selective advantage of an allele.
We were indeed surprised to discover that, while inclusive
fitness still measures the selective change in gene frequency
experienced in one behavioral time step, as Hamilton
(1964) intended it to do, it does not, in general, give us
the standard gene frequency/fixation conditions that de-
termine the success of the behavior under study; instead,
it requires the calculation of an additional term accounting
for the effect of selection through mutation.

Here, in order to highlight some of the differences be-
tween the four measures, we had to choose a simplified and
somewhat abstract, but nevertheless general, modeling
framework that covers a vast number of theoretical studies
in finite populations from the last decade. As with any mod-
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eling framework, however, changes in the assumptions are
likely to lead to different results. For example, we assume
a fixed population size where the birthrates and death rates
of individuals depend on the payoffs but not explicitly on
the location on the graph and where, moreover, the average
birthrate is the same whenever all individuals are of only
one type; in addition, we assume that mutations occur only
at birth (i.e., only in offspring). Extending this to allow for
varying population size, location-dependent fitness, differ-
ent average birthrates in the pure states, and mutations
occurring in adults is likely to yield different results. The
point that we are trying to make is not that this particular
modeling framework is the most biologically appropriate or
even the most appropriate theoretically to reveal all possible
discrepancies, but that, depending on the modeling frame-
work, discrepancies can and do exist between these four
very general and very generally employed measures. The
important conclusion of our article is, therefore, that a rig-
orous and general formulation of these various measures
was necessary to allow us to see that they are not, in general,
equivalent and, furthermore, to approach the questions of
how and when they can be equivalent. Within our frame-
work, we find that when rigorously defined and appropri-
ately modified, the different measures provide equivalent
answers but different angles from which one can view the
effects of population structure on the selection of behavioral
strategies, and this can be of great value.

Finally, the results presented here are derived for pop-
ulations of finite size. However, the literature abounds with
two types of models—infinite population models and fi-
nite population models, with the latter having garnered
interest much more recently. One significant difference is
that in the first type, the effects of selection on allele fre-
quency are generally of a larger order of magnitude than
mutation effects, while in the second type, these are of the
same order of magnitude, essentially because the propor-
tion of time that the population is in a mixed state is of
order u. Classical inclusive fitness models did not generally
take mutation into account, as they worked implicitly with
what we are calling infinite population models, where the
effects of mutation were of a smaller magnitude and thus
could be ignored. Of course, one still needs a source of
genetic novelty, and in the infinite population model, this
is generally provided by distant migration.

A question that then arises is whether there could be
an effect of selection through migration in the case of
infinite populations that is analogous to the effect of se-
lection through mutation identified in this article in the
case of finite populations. Suppose we have an island
model with rare migration and heterogeneous islands.
Then the frequency of mixed-state islands will be of the
same order of magnitude as the migration rate, and se-
lective effects will therefore also be of the same order of

magnitude as the migration rate. Then almost all migrants
will emanate from an all-A or an all-B island, and the
selective regimes might be different on these two types of
island. But will that difference result in a difference in the
RV of the nodes colonized by the A migrants and the B
migrants? This would require immigrants to carry some
“memory” of the node they came from on their native
island and for that to condition the choice of node they
colonized. In terms of the star graph, for example, an
immigrant born at a hub node might be able to choose
to colonize a leaf node. A full analysis of the analog infinite
population model is yet to be performed, and together the
results for finite and infinite heterogeneous population
models will provide the strongest connection to the bio-
logical world. In this sense, these finite population results
are a first step.
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Appendix A from C. E. Tarnita and P. D. Taylor, “Measures of
Relative Fitness of Social Behaviors in Finite Structured Population
Models”
(Am. Nat., vol. 184, no. 4, p. 477)

Equivalence of First Three Measures and Discussion of Weak Selection
In this appendix, we perform a general analysis on a heterogeneous network to relate the selective long-term equilibrium
frequency AxS to the long-term equilibrium of the one-step frequency change for any intensity of selection. Then, taking
the weak selection limit of the latter, we will make the connection with the neutral average change. The first part of the
argument below follows closely but simplifies and improves the proof in Nowak et al. (2010), appendix A. At first we
allow nonweak mutation rates and take the low mutation limit later. The frequency of A will increase when an A
individual gives birth accurately or when a B individual gives birth to an A mutant, and it will decrease when an A
individual dies. Thus, keeping in mind that mutation is asymmetric, we can write the total one-step change in gene
frequency due to both selection and mutation as

1tot sel mutD x p [1! u(1! p)] x b " up (1! x )b ! x d p D x ! D x , (A1){ ! ! ! }S i i i i i i S SN i i i

where we have denoted to be the one-step change in gene frequency due to selection andselD x p (1/N)! x (b ! d )S i i ii

to be the one-step negative change in gene frequency due to the interaction betweenmutD x p (u/N)! b (x ! p)S i ii

mutation and selection in a state S. At the stationary equilibrium, the total change is zero, and hence,
sel mutAD x S p AD x S. (A2)S S

This holds for any mutation rate and any intensity of selection and simply says that in a process with both mutation and
selection, on average, these two forces must balance each other out. Now let us explore what happens to the mutation
term above in the limit of low mutation. In the mixed states, the stationary probabilities will be of order u since they
must approach zero, as u approaches zero. Thus, since the mutation term is already linear in u, the calculation of its long-
term average will only involve the two pure states. Hence, the first-order term in u of this long-term average can be
written as . Here, is the average birthrate (average fecundity) inu[b (1! p)p (0, d)" b (!p)p (0, d)] b p (1/N)! b1 1 0 0 S i,Si

state S. For processes for which in the pure states the average birthrate is identical (i.e., b1 p b0 p b), the above can be
simplified further. This assumption is in fact very weak, and many processes of interest satisfy it—for example, the
Moran process with birth-death or death-birth updating and the Wright-Fisher process. Under this assumption, and using
the fact that for low mutation p1 " p0 p 1 and , the above mutation term becomes equal toAxS p p (0, d)1

. Then, using (A2), we conclude that in the limit of low mutation, for processes for which the totalub[lim AxS ! p]ur0

birthrate is constant in the pure states,
sel (u)AD x S 1 0 ⇔ lim AxS 1 p ⇔ r 1 r , (A3)S A B

ur0

where h(y) represents the coefficient of the linear term of h with respect to y. This condition asserts the equivalence of the
first three measures for any type of structure and any intensity of selection. As we have pointed out, none of these three
conditions can be easily calculated, and that is what turns our attention to a weak-selection condition.

Low Mutation and Weak Selection
In this section, we will use Taylor expansions with respect to two variables, u and d. Since our functions are continuous
and differentiable with respect to either one of the variables when the other is kept fixed, we can take the Taylor
expansions sequentially and interchangeably. The first-order Taylor expansion with respect to d of the average change due
to selection is

sel (d) sel sel (d)ADx S p d (D x )p (u, 0)" (D x )F p (u, 0) , (A4)! !S S S dp0 S[ ]
S S
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1 Here we make a note that when we refer to the coefficient of the linear term in y of a function h, we use the notation h(y). However, when we want to write the actual
expansion of the function h to first order in y, we will write h p h(0) ! yh(y). So in the text, when we write h p yh(y), it simply means that h(0) p 0. In other words, we
distinguish between the coefficient of the linear term and the actual linearization of the function.

where we used the fact that the constant term of ADxselS is 0 because at neutrality there is no change due to selection.1 The
first term on the right-hand side is the kind of term that we are able to calculate because it contains only the stationary
distribution at neutrality (d p 0). For a homogeneous population, at neutrality, the births and deaths at every node are
equal (because nodes are effectively identical). Hence, (DSxsel)Fd p 0 is zero in every state, and therefore the second term
on the right-hand side of the above is zero. If we further consider the first-order Taylor expansion with respect to u of the
remaining nonzero term (the first term on the right-hand side of [A4]), we find that

sel (d) sel (u)ADx S p duAD x S , (A5)0

where A7S0 denotes the stationary average in the absence of selection (d p 0) and h(u) represents the coefficient of the
linear term of the Taylor expansion of the function h with respect to u. Thus, for homogeneous populations, the weak
selection and low mutation limit of the stationary average change in gene frequency is simply (and luckily) the first-order
term with respect to u of the neutral stationary average of the first-order term with respect to d of the one-step gene
frequency change. So in the limit of weak selection in homogeneous populations, we recover the known result

ur0 ur0 u,dr0sel (u) (d) sel (u)AxS 1 p ⇔ r 1 r ⇔ AD x S 1 0 ⇔ AD x S 1 0 ⇔ W 1 0. (A6)A B S S 0 IF

The conditions under which the last equivalence holds have previously been shown (Rousset and Billiard 2000; Nowak et
al. 2010; Wakano et al. 2013). For a heterogeneous population, however, the births and deaths at every node do not
necessarily balance each other out, even at neutrality. Hence, (DSxsel)Fd p 0 is not necessarily zero, and therefore the second
term on the right-hand side of (A4) can be nonzero. That term, however, still contains the nonneutral stationary
probabilities that prevented the calculation of the change due to selection in the previous section, a problem that we
hoped to solve by taking the weak selection limit. Thus, because of heterogeneity, this approach remains hard to
calculate. The effective problem is that selection, in affecting behavior, also changes fitness; this, in turn, affects
genotypic distributions, and in heterogeneous populations, this makes a contribution to gene frequency change. This
problem, in various settings, has been known for some time and the resolution, developed in infinite population models,
has been to make use of reproductive value (Taylor 1990; Leturque and Rousset 2002).
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RV-Weighted Gene Frequency
In the main text, we claimed that, at the stationary equilibrium, selection balances mutation:

sel mutˆ ˆAD x S p AD x S, (B1)S S

where and . Below, we look at both these averages in the limit ofsel mutˆ ˆ ˆˆ ˆD x p (1/N)! x (b ! d ) D x p (u/N)! b (x ! p)S i i i S i ii i

low mutation and weak selection. In what follows, we will take Taylor expansions with respect to both u and d; the order
in which we do this does not matter since, under our assumptions, all functions we are dealing with are continuous and
differentiable with respect to each (and both) of these variables when the other variable is fixed. So the order we choose
is simply the one that is most convenient for our analysis.

Step 1. Has the Form udK to First Order in u and dselˆADx S
Using the same arguments, as we did before for the change in unweighted gene frequency, we can write the linear term
of the average first as a function of d:

! !sel sel selˆ ˆ ˆADx S p d (D x )F p (u, 0)" (D x )F p (u, 0)F . (B2)! !S dp0 S S dp0 S dp0[ ]!d !dS S\ \
(d) sel (d)ˆD x p (u,0)S S

From the definition of RV in the main text, it follows that at neutrality, , which yields that the change due toˆ ˆb p di i

selection is zero in all states: . Hence, the second term in the above is zero, and we obtain that in the limitselˆDx F p 0dp0

of weak selection:
sel (d) sel (d) selˆ ˆ ˆADx S p d D x p (u, 0) p dAD x S . (B3)! S S 0

S

Next, we write the linear term of the above as a function of u

(d) sel (d) sel (u)ˆ ˆp d (D x )p (0, 0)" u (D x )p (u, 0) . (B4)! !S S S S( )
S S

The first term in the above sum is zero because in the absence of mutation, for all mixed states S, and in thep (0, d) p 0S

pure states, the change due to selection is zero since in the absence of mutation, selection alone cannot push the system
out of pure states. Thus,

sel (d) sel (u) (d) sel (u)ˆ ˆ ˆADx S p du (D x )p (u, 0) p duAD x S . (B5)! S S 0
S

Here, the notation A7S0 means that the average is taken over the neutral stationary distribution (d p 0). The notation h(x)
signifies the coefficient of the linear term of the Taylor expansion of function h with respect to x.

Step 2. Also Has the Form udK to First Order in u and dˆ(u/N)A! b (x ! p)Si ii

For the second term, we take the limit of low mutation and ignore all but the pure states (as explained in the main text).
Then the linear term in u is

u ˆ ˆ(1! p)p (0, d) b ! pp (0, d) b . (B6)! !1 i,1 0 i,0[ ]N i i
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Here is in state S. Next, we write the linear term in d, keeping in mind that at neutrality, ,ˆ ˆb b p (0, 0) p 1! pi,S i 0

, and fecundity is independent of state. We find that the above has the formp (0, 0) p p1

du ! !(0)ˆ ˆ ˆp(1! p) b ! b " b [(1! p)p (0, d)! pp (0, d)]F . (B7)! ! !i,1 i,0 i 1 0 dp0F{ ( ) }N !d !di i idp0

This concludes the proof of step 2. Combining steps 1 and 2 and noting that the difference is(1! p)p (0, d)! pp (0, d)1 0

proportional to rA ! rB (as discussed in the main text), we conclude that

!(d) (d) (d) sel (u) (d) (d)ˆ ˆˆr ! r p (r ! r )F ∝ AD x S ! p(1! p)(b ! b ). (B8)A B A B dp0 0 1 0!d

Here, is the first-order term in d of the average birthrate in state S. In (B8), the first term is(d) ˆb̂ p (!/!d)[(1/N)! b ]FS i,S dp0
isimply the change due to selection in the RV-weighted allele frequencies; the second term is the part due to mutation and

birth that is not necessarily zero when the population is heterogeneous.
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Calculation for the Star Using RV-Weighted Change in Gene Frequency
Here, we perform a calculation for the star using the average change in gene frequency due to selection, together with the
RV transformation. But first we show how the quantities of interest look for any heterogeneous structure with birth-death
updating. First, we relate the effective payoff to the birthrate and death rate for a process with birth-date (BD) updating
and fecundity payoffs. With this, birth happens first with a probability proportional to breeder fecundity; the offspring of
the reproducing individual then replaces one of the neighbors of the parent at random. So we can write bi p fi/F and

, where pji is the probability that an offspring of individual j will colonize location i. Since an offspring
Nd p ! b pi j jijp1

will replace any one of the parent’s neighbors at random, then pji p 0 if i is not a neighbor of j, and otherwise, pji p
1/nj, where nj is the number of neighbors of individual j.
For BD updating, the RV-weighted birthrate and death rate become andˆ ˆb p b ! p v p ( f /F)! p v d p d v pi i ij j i ij j i i ij j

. Then, in the limit of weak selection, the coefficient of the linear term with respect to d of the differencev ! b pi j jij

between the birthrate and death rate is

1(d) (d)ˆ ˆb ! d p e p v ! v e p , (C1)! !i i i ij j i j ji( )N j j

where is the accumulated payoff of individual i.ei
Now we go back to the explicit calculation for the three star. We denote the hub by 0 and the left and right leaves by

1 and 2, respectively (see fig. 1B in the main text). Using the above definition for the star, it is easy to check that, at
neutrality, b0 p 1/3 ( 2/3 p d0, b1 p 1/3 ( 1/6 p d1, b2 p 1/3 ( 1/6 p d2, so the star is the type of network for
which, even at neutrality, the death rate and birthrate of individuals are not necessarily the same. This means that we are
in the case where, to be able to calculate in the limit of weak selection, we need to use reproductive values. It is easy to
see that for the three star, v1 p v2 p 2v0. This, together with the normalizing condition , determines the vi;! v p 1ii

however, for convenience, we will use the unnormalized values v1 p v2 p 2 and v0 p 1. Let f0, f1, and f2 be the
effective payoffs of individuals at the three locations, and let F p f0 " f1 " f2 be the total effective payoff in the
population. Using the above births and deaths, we write

f 1 1 f f0 1 2ˆ ˆ ˆb p v " v b p v b p v0 1 2 1 0 2 0( )F 2 2 F F . (C2)f " f f 1 f 11 2 0 0ˆ ˆ ˆd p v d p v d p v0 0 1 1 2 2F F 2 F 2

It is now easy to see that at neutrality, for each node, the weighted birthrate is equal to the weighted death rate. Let us
now write the effective payoffs of the three individuals so we can proceed to calculate the condition for strategy A to be
favored over strategy B. Our calculation works for any game, given by a general matrix. However, due to the S result in
Tarnita et al. (2009b; see also Taylor and Maciejewski 2012), we know that in the limit of weak selection, it suffices to
study one-parameter games such as the simplified Prisoner’s Dilemma with benefit B and cost C. Then the effective
payoffs of the individuals at the three locations are given by ,f p 1" de p 1" d[!2Cx " B(x " x )] f p 1" de p0 0 0 1 2 1 1

, and . We have now all the elements necessary to calculate the1" d(!Cx " Bx ) f p 1" de p 1" d(!Cx " Bx )1 0 2 2 2 0

condition given by (B8).
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First, we calculate the simpler of the two terms on the right in (B8), the mutation term (the second term), using the
expressions for the birthrates in (C2):

1 1 1(d) (d) (d) (d)ˆ ˆ ˆb̂ p (b ! b ! b ) p (2B " 2C)(v " v ) p v (2B " 2C),1 H,1 L,1 R,1 1 0 03 27 27 (C3)
1(d) (d) (d) (d)ˆ ˆ ˆb̂ p (b ! b ! b ) p 0.0 H,0 L,0 R,03

These represent the first-order term in d of the average birthrate in the state where all players are cooperators,
respectively, defectors. Then the mutation term is

1(d) (d)ˆ ˆp(1" p) b " b p p(1" p)v (2B " 2C). (C4)( )1 0 027

Next, we calculate the selection term (the first term on the right) in (B8), and using (C2) and the expression for the
effective payoffs into (C1), we find that it is equal to

1 1(d) (d) (d) (d) (d) (d) (u) 2 u 2 u u( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆAx (b " d )! x (b " d )! x (b " d )S p v "2BAx S " 2CAx S ! (2B ! 2C)Ax x S{ [ ]0 H H 1 L L 2 R R 0 0 0 0 1 0 1 0 03 9 (C5)
2 u 2 u u u( ) ( ) ( ) ( )!v "BAx S " 2CAx S ! (2B ! 2C)Ax x S " BAx x S .[ ]}1 1 0 0 0 1 0 0 1 2 0

To simplify the above expression and show only the effects of different types of nodes (instead of the effects of each
node), we used the symmetry of the left and right leaves at neutrality, which yields , together with theAx x S p Ax x S1 0 0 2 0 0

fact that v1 p v2. Now we need to interpret and calculate the neutral averages: is the probability that a leaf andAx x S1 0 0

the hub are both cooperators; is the probability that the two leaves are both cooperators. Such quantities haveAx x S1 2 0

been related to the probability G that two individuals are identical by descent at neutrality, as 2Ax x S p pG ! p (1"i j 0 ij

. The probability that individuals are identical by descent can be calculated using recursions as2G ) p p(1" p)G ! pij ij

shown in appendix D. Let G10 and G12 be the probabilities that a leaf and the hub, respectively, the two leaves, are
identical by descent. We find (app. D) that in the limit of low mutation, G10 p 1 " 7u/3 and G12 p 1 " 10u/3. Using
these in (C5), we find the selection term to be

1(d) sel u( )ˆAD x S p p(1" p)v ("42C " 22B). (C6)0 027

Combining the mutation and selection terms into (B8), we obtain the condition for cooperators to be favored over
defectors to be

8
p(1" p)("3B " 5C) 1 0, (C7)

27

which is the same "3B " 5C 1 0 condition found using the fixation probabilities approach.
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Identity by Descent
Let and be the probabilities that a leaf and the hub and the two leaves, respectively, are identical by descent att tG G10 12

time t. Then, in order to write what happens at time t ! 1, we first point out that the only possible events from time t to
time t ! 1 are as follows. (a) The hub reproduces into the left leaf with probability 1/6, and then the only possibility for
the left leaf and the hub to be identical by descent is if the hub reproduces correctly. (b) The hub reproduces into the
right leaf with probability 1/6; in this case, the hub and the left leaf are identical by descent only if they were identical
by descent in the previous step. (c) The left leaf reproduces into the hub with probability 1/3; then, as in case (a), the left
leaf and the hub can be identical by descent only if the leaf reproduced correctly. Or (d), the right leaf reproduces into
the hub with probability 1/3; then the left leaf and the hub are identical by descent only if the left leaf and the right leaf
were identical by descent in the previous time step and the right leaf reproduced correctly. Similarly, one can analyze
what happens in these four cases to the probability that the two leaves are identical by descent. We can then write

1 1 1 1t!1 t tG p (1" u)! G ! (1" u)! G ,10 10 126 6 3 3 (D1)
1 1 1 1t!1 t t t tG p G (1" u)! G (1" u)! G ! G .12 10 10 12 126 6 3 3

Since we are concerned with the long-term limit, we have and , which allows us tot!1 t t!1 tG p G p G G p G p G10 10 10 12 12 12

solve the above system of equations and furthermore take the limit of low mutation of the results to find that

7
G p 1" u,10 3 (D2)

10
G p 1" u.12 3


