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Deterministic evolutionary theory robustly predicts that populations
displaying altruistic behaviors will be driven to extinction by mutant
cheats that absorb common benefits but do not themselves
contribute. Here we show that when demographic stochasticity is
accounted for, selection can in fact act in the reverse direction to that
predicted deterministically, instead favoring cooperative behaviors
that appreciably increase the carrying capacity of the population.
Populations that exist in larger numbers experience a selective
advantage by being more stochastically robust to invasions than
smaller populations, and this advantage can persist even in the
presence of reproductive costs. We investigate this general effect in
the specific context of public goods production and find conditions
for stochastic selection reversal leading to the success of public good
producers. This insight, developed here analytically, is missed by the
deterministic analysis as well as by standard game theoretic models
that enforce a fixed population size. The effect is found to be
amplified by space; in this scenario we find that selection reversal
occurs within biologically reasonable parameter regimes for micro-
bial populations. Beyond the public good problem, we formulate a
general mathematical framework for models that may exhibit
stochastic selection reversal. In this context, we describe a stochastic
analog to r — K theory, by which small populations can evolve to
higher densities in the absence of disturbance.

stochastic dynamics | nonfixed population size | cooperation |
public goods | timescale separation

ver the past century, mathematical biology has provided a

framework with which to begin to understand the com-
plexities of evolution. Historically, development has focused on
deterministic models (1). However, when it comes to questions
of invasion and migration in ecological systems, it is widely ac-
knowledged that stochastic effects may be paramount, because the
incoming number of individuals is typically small. The importance of
demographic (intrinsic) noise has long been argued for in population
genetics; it is the driver of genetic drift and can undermine the effect
of selection in small populations (2, 3). This concept has also found
favor in game theoretic models of evolution that seek to understand
how apparently altruistic traits can invade and establish in pop-
ulations (4). However, the past decade has seen an increase in the
awareness of some of the more exotic and counterintuitive aspects of
demographic noise: It has the capacity to induce cycling of species (5),
pattern formation (6, 7), speciation (8), and spontaneous organization
in systems that do not display such behavior deterministically.

Here we explore the impact of demographic noise on the di-
rection of selection in interactions between multiple phenotypes
or species. Historically, a key obstacle to progress in this area has
been the analytical intractability of multidimensional stochastic
models. This is particularly apparent when trying to investigate
problems related to invasion, where systems are typically far from
equilibrium. A promising avenue of analysis has recently become
apparent, however, through stochastic fast-variable elimination (9,
10). If a system consists of processes that act over very different
timescales, it is often possible to eliminate fast modes, assumed to
equilibrate quickly in the multidimensional model, and obtain a
reduced dimensional description that is amenable to analysis (11).
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This approach has been used multiple times over the past decade to
study a stochastic formulation of the classical Lotka—Volterra
competition model for two competing phenotypes/species. In refs.
9, 10, and 12-14, such models were analyzed under the assumption
that the dynamics regulating the total population size (birth, death,
and competition) occurred on a much faster timescale than the
change in population composition. In particular, refs. 9, 10, 12, and
13 have shown that it is possible for systems that appear neutral in a
deterministic setting to become nonneutral once stochasticity is in-
cluded. If the two phenotypes have equal deterministic fitness, but
one is subject to a larger amount of demographic noise than the
other, then the effect of this noise alone can induce a selective drift
in favor of the phenotype experiencing less noise. This result stems
from the fact that it is easier to invade a noisy population than a
stable one; furthermore, the direction of this induced selection can
vary with the system’s state (15). The idea has been further gener-
alized mathematically in ref. 16.

Here we show more generally that not only can stochasticity
break deterministic neutrality, but it also has the capacity to reverse
the direction of selection predicted deterministically. Thus,
whereas in a deterministic setting a certain phenotype will always
reach fixation (and is resistant to invasions), in a stochastic setting
its counterpart can in fact be more likely to invade and fixate (and
be less susceptible to invasions). These results generalize recent
work on modified Moran- and Wright-Fisher-type models (17, 18)
to a large class of models consisting of two phenotypes interacting
with their environment. We begin with the analysis of a pro-
totypical public good model, which is used to illustrate our method.
We find that stochastic selection reversal can alleviate the public
good production dilemma. We further show how space can amplify
this phenomenon, allowing the reversal of selection to emerge over
a greater parameter range. Finally, we extend the ideas to a more
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general model framework and explore the types of system in which
we expect this behavior to be relevant. In particular, we discuss the
similarities with » — K selection theory (19).

Public Good Model

It is generally accepted that random events play a strong role in
the evolution of cooperative behavior, which is deterministically
selected against (4). The standard formulation of evolutionary
game theory involves setting the problem in terms of a modified
Moran model (20, 21). The Moran model is a population genetic
model first developed as an abstract illustration of the effect of
genetic drift in a haploid population of two phenotypes; an indi-
vidual is picked to reproduce with a probability proportional to its
fitness, whereas simultaneously a second individual is chosen ran-
domly to die (22). Coupling birth and death events keeps the
population size fixed, which increases the tractability of the system.

The specification of fixed population size is, however, re-
strictive and can be problematic. Most prominently, a phenotype
with increased fitness can be no more abundant in isolation than
its ailing counterpart. Additional difficulties are encountered if
one attempts to use simple game-theoretic models to quantita-
tively understand more complex experimental data. Whereas, for
example, assuming some arbitrary nonlinearity in the model’s
game payoff matrix may enable experimental findings to be el-
egantly recapitulated, it is more difficult to justify the origin of
these assumptions on a mechanistic level (23). In light of such
issues, it has been suggested that a more ecologically grounded
take on the dynamics of cooperation might be preferable (24,
25), one in which the population size is not fixed and that is
sufficiently detailed that mechanistic (rather than phenomeno-
logical) parameters can be inferred experimentally. In the fol-
lowing, we take such an approach. We begin by considering a
prototypical model of public good production and consumption.

In our model, we consider a phenotype X having the ability to
produce a public good Q that catalyzes its growth. We wish to
capture the stochastic dynamics of the system. To this end we
assume that the system is described by a set of probability tran-
sition rates, which describe the probability per unit time of each
reaction occurring:

X X +X,

X+0—B. X+X+0Q, [1]
X—2. X+0Q,
02— @.

In the absence of the public good, the producer phenotype X
reproduces at a baseline birthrate b,. The phenotypes encounter
each other and the public good at a rate R~2; the quantity R? can
be interpreted as a measure of the area (or volume) to which the
system is confined. Death of the phenotype occurs solely due to
crowding effects at rate x, multiplied by the encounter rate. Phe-
notypes encounter and use the public good at a rate r/R>. We
study the case where this reaction is catalytic (i.e., the public
good is conserved) and leads to a phenotype reproduction. Examples
of catalytic (reusable) public goods are the enzyme invertase pro-
duced by the yeast Saccharomyces cerevisiae (26) or the siderophore
pyoverdine produced by the bacterium Pseudomonas aeruginosa
(27). The total rate at which the phenotype reproduces is thus in-
creased in the presence of the public good. The public good itself is
produced by the producer phenotype at a rate p, and decays at a rate
8. Note that as well as controlling the spatial scale of the well-mixed
system, the magnitude of R will also control the typical number of
individuals in the system, because larger R (more space) allows the
population to grow to greater numbers. We next introduce a mutant
phenotype Y that does not produce the public good (i.e., py =0);
consequently, it has a different baseline birth rate b, that we expect
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to be at least as high as that of the producer, due to the nonpro-
ducer’s reduced metabolic expenditure. Its interactions with the pub-
lic good are otherwise similar to those of X (Eq. 1).

The state of the system is specified by the discrete variables n,,
ny, and n,, the number of each phenotype and public good, re-
spectively. For the system described, we wish to know the proba-
bility of being in any given state at any given time. To answer this,
we set up an infinite set of ordinary differential equations (ODEs)
[one for each unique state (n,ny,n,)] that measures the flow of
probability between neighboring states (controlled by the transitions
in Eq. 1). These equations govern the time evolution of a probability
density function P(n,,n,,n,,t) (Eq. S2). Such a model is sometimes
termed a microscopic description (28), because it takes account of
the dynamics of discrete interactions between the system variables.

Although the probabilistic model is straightforward to formalize,
it is difficult to solve in its entirety. We apply an approximation that
makes the model more tractable, while maintaining the system’s
probabilistic nature. Such approximations, which assume that the
system under consideration has a large but finite number of indi-
viduals, are well practiced and understood (28) and are analogous
to the diffusion approximation (22) of population genetics. As-
suming that R is large, but finite (which implies a large number of
individuals in the system), we transform the system into the ap-
proximately continuous variables (x,y,q) = (ny,ny,n,)/R? and ex-
pand the partial difference equations in 1/R?. This allows us to
express the infinite set of ODEs as a single partial differential
equation in four continuous variables, (x,y,q,t). However, because
the partial differential equation (PDE) results from a Taylor ex-
pansion, it has infinite order. Truncating the expression after the
first term (at order R~2), one obtains a deterministic approxima-
tion of the dynamics (valid for R — oo or equivalently for infinite
population sizes). Because we aim to make the system tractable but
still retain some stochastic element in the dynamics, we truncate
the expansion after the second term (at order R™*; Eq. S4). The
resulting model can be conveniently expressed as a set of Ito sto-
chastic differential equations (SDEs):

¥=x[b, +7q — k(x +y)] + R, (1),
y=y[by+rg—k(x+y)] + Ry, (1), 2]
G=px—5q +R_l’7q(t)'

The #;(t) represent Gaussian white noise terms whose correla-
tions depend on the state of the system (the noise is multiplica-
tive). Importantly, because Eq. 2 has been developed as a
rigorous approximation of the underlying stochastic model,
Eq. 1, the precise functional form of the noise can be determined
explicitly, rather than posited on an ad hoc basis (SI Obtaining
the SDE System from the Microscopic Individual-Based Model).
Setting R — oo, the population size increases with the interaction
scale and one recovers the deterministic limit. Because Eq. 2 is a
course-grained approximation of the underlying microscopic
model but retains an inherent stochasticity, it is often referred
to as the mesoscopic limit (29).

First, we analyze the dynamics of Eq. 2 in the deterministic, R — oo
limit. There exist three fixed points or equilibria. The first one, at the
origin, is always unstable. The remaining fixed points occur when
the system contains only a single phenotype: the producer fixed
point, (x,y,q)=(Ky,0,p.K,/5), and the nonproducer fixed point,
(x,y,q)=(0,K,,0). Thus, K, and K, are measures of the pheno-
types’ frequency (carrying capacity) in isolation, with precise forms

K. = bid S Kyzlﬁ. [3]
KO —pxI K

If b,>b,, then the nonproducer fixed point is always stable
whereas the producer fixed point is always unstable. However,
the nonproducer fixed point is globally attracting only if k6 > 1p,. If
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Fig. 1. System dynamics in the phenotype plane. Deterministic trajectories are
shown as gray arrows. (A) Trajectories rapidly collapse to a SM (black dashed
line), before slowly moving to the nonproducing Y fixed point. Stochastic tra-
jectories (histogram overlaid in orange) remain in the region of the SM but may
fluctuate away from it. (B) lllustration of the origin of noise-induced selection.
The orange ellipse depicts the SD of Gaussian fluctuations originating at its
center. Fluctuations (black dashed arrows) to points a are equally likely; how-
ever, when projected back to the CM (black dashed line) to points 3, a bias for
producing the X phenotype is observed. Parameters used are py =9.5x 1074,
£=0.08in A, ¢=0in B, and the remaining parameters are given in Table S2.

this condition is not met, then there exist initial conditions for which
the producers produce and process the public good faster than they
die and faster than the public good degrades, resulting in unbounded
exponential growth of the system. This biologically unrealistic behav-
ior comes from the fact that we have assumed for simplicity that the
public good uptake does not saturate. Because this behavior is un-
realistic, we work in the regime «& > rp, for the remainder of this
paper. Finally, we are interested in systems where the size of the
producer population in isolation is larger than that of the non-
producer, K, >Kj; this is true if the condition b, > by (1 —1p./bk)
holds. Thus, deterministically, a nonproducing mutant will always
take over a producer population and, due to the absence of the
public good, it will yield a smaller population at equilibrium.

This deterministic analysis predicts, unsurprisingly, that a
population composed entirely of nonproducers is the only stable
state. We next explore the behavior of the system in Eq. 1 when
demographic stochasticity is considered.

Mesoscopic Selection Reversal. Due to noise, a stochastic system will
not be positioned precisely on deterministic fixed points, but rather
it will fluctuate around them. In the above system, these fluctua-
tions will occur along the y axis for the nonproducer fixed point
whereas in the absence of nonproducers they will occur in the (x,q)
plane for the producer fixed point. We can define N, =R?K, and
N, =R2K, to be the mean number of the phenotypes X and Y in
isolation in the respective stationary states. We assume that the
nonproducing phenotype has a greater per capita birth rate than
the producer phenotype, i.., by >b;, and we introduce a single
nonproducing mutant into a producer population. Whereas the
deterministic theory predicts that the nonproducer should sweep
through the population until it reaches fixation, in the stochastic
setting fixation of the nonproducer is by no means guaranteed:
There is a high probability that the single mutant might be lost due
to demographic noise. However, because the nonproducer is de-
terministically selected for, we might expect the probability of a
nonproducer mutant invading and fixating in a resident producer
population to be greater than the probability of a producer mutant
invading and fixating in a resident nonproducer population. We
explore this question below.

To make analytic predictions about the stochastic model, we need
to reduce the complexity of the system. This can be done if we use
methods based on the elimination of fast variables (30) to obtain an
effective one-dimensional description of the system dynamics. To
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this end, we begin by assuming that the public good production and
decay, p, and 6, and the phenotypes’ reproduction and death, b,,
by, and , occur on a much faster timescale than the rate of change
of population composition, which is governed by the difference in
birth rates, b, —b,. Essentially this assumption requires that the cost
of public good production is marginal. In the case of S. cerevisiae,
this assumption is supported by empirical work (Table S2). To
mathematically investigate this timescale separation we define

by=b(1-¢), by=b, [4]
where the parameter ¢ represents the metabolic cost that X pays
for producing the public good. The parameter ¢ now controls the
rate of change of the population composition, and if 1 > ¢, we
have our desired timescale separation in the deterministic sys-
tem. Because the parameters K, K,, N,, and N, depend on &, we
find it convenient to define their values when £ =0 as Kx(o, Ky(o),
N;”, and Ny(o), respectively. To maintain our assumption that the
composition of the phenotype population changes slowly in the
stochastic system, we additionally require that the noise is small.
However, this assumption has already been implicitly made in
the derivation of Eq. 2, where it is assumed that R is large, and
thus R~!, the prefactor for the noise terms, is small. To formalize
this, we find it convenient to assume R2~O().

Under the above assumptions, the system features a separa-
tion of timescales. Next, we take advantage of this timescale sep-
aration to reduce the complexity of the system. Deterministically,
the existence of a set of fast timescales suggests the existence of a
lower-dimensional subspace, the slow manifold (SM), shown in
Fig. 14, to which the system quickly relaxes, and along which it
slowly moves, until it reaches the system’s stable fixed point. This
behavior can be exploited if we assume that the system reaches
the SM instantaneously. We can then describe the dynamics of the
entire system in this lower-dimensional space and thus reduce the
number of variables in our description of the deterministic system.
However, we are interested in the stochastic dynamics.

The stochastic trajectories initially collapse to the region around
the SM, about which they are confined, but along which they can
move freely until one of the phenotypes fixates (Fig. 14). Fluctuations
that take the system off the SM are quickly quashed back to
another point on the SM; however, the average position on the SM
to which a fluctuation returns is not necessarily the same as that
from which the fluctuation originated. A crucial element of the
dynamics in this stochastic setting is that the form of the noise,
combined with that of the trajectories back to the SM, can induce a
bias in the dynamics along the SM (Fig. 1B and Fig. S1). This bias is
the origin of the stochastic selection reversal that we explore. To
capture this behavior while simultaneously removing the fast time-
scales in the stochastic system, we map all fluctuations off the SM
along deterministic trajectories back to the SM (30). This procedure
essentially assumes that any noisy event that takes the system off the
SM is instantaneously projected back to another point on the SM.

For clarity, we briefly describe the dynamics when & =0. In this
case the birth rates of phenotypes X and Y are identical. Instead
of the two nonzero fixed points, K, and K,, found above, the
deterministic system now has a line of fixed points, referred to as
a center manifold (CM) (31). The CM is identical to the SM in
the limit € — 0. It is given by

(0)
Ky ) DPx
y=—"= (K" —x), q=-"2x, [5]
K)E(]) ( X ) 5

and shown graphically in Fig. 1B. The separation of timescales in
the system is now at its most pronounced, because there are strictly
no deterministic dynamics along the CM following the fast transient
to the CM. However, the stochastic system still features dynamics
along the CM. Applying the procedure outlined in ref. 30, we arrive
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at a description of the stochastic dynamics in a single variable, the
frequency of producers along the CM,

., b 1
x=ﬁx(1—é> Fx) + (1), (61

where

Here {(¢) is a Gaussian white noise term with a correlation struc-
ture given in Eq. S18. Together with Eq. 5, Eq. 6 approximates the
dynamics of the entire system. Note that whereas Eq. 6 predicts a
noise-induced directional drift along the CM [controlled by F (x)],
a deterministic analysis predicts no dynamics, because the CM is by
definition a line of fixed points. This directional drift along the CM
results from the projection bias illustrated in Fig. 1B. If p, > 0, then
K >Ky(0), and so F(x)>0; thus the public good production by
phenotype X induces a selective pressure that selects for X along
the center manifold.

The origin of the term F(x) in Eq. 6 can be understood more
fully by exploring its implications for the invasion probabilities
of X and Y, denoted ¢, and ¢,. These can be straightforwardly
calculated because the system is one dimensional (SI Probability
of Fixation for the Reduced Public Good Model). We find

1 1
¢x =17y7 and ¢y ZATX’ [7]

where ¢, > ¢, as long as p, > 0 (Eq. 3). The term F(x) can thus be
interpreted as resulting from the stochastic advantage the pro-
ducers have at the population level from reaching higher carrying
capacities in isolation, which makes them more stochastically ro-
bust to invasion attempts. This result is independent of the spatial
scale R (and therefore of the population size) as long as R is finite.
If £ #£0, the system does not collapse to the CM, but rather to
the SM. At leading order in &, the equation for the SM is given
by Eq. 5. Upon removing the fast dynamics, the effective dy-
namics of x can now be shown to take the form (Eq. S23)

. X 1 1
x=bx<1—@> (IT]:(.X')—S) +I_2C(t), [8]

where ({(t) and F(x) are the same as in Eq. 6. The SDE now
consists of two components. The deterministic contribution, governed
by &, exerts a selective pressure against phenotype X, due to its
reduced birth rate. The stochastic term F (x) exerts a pressure in
favor of phenotype X, resulting, as in the case ¢ =0 discussed
above, from the producers’ stochastic robustness to invasions.
Thus, when & >0, a trade-off emerges in the stochastic system
between the stochastic advantage to public good production (due to
increased population sizes) and the deterministic cost producers
pay (in terms of birth rates). If the birth costs are not too high,
producers will be selected for, which constitutes a reversal in the
direction of selection from the deterministic prediction. Specifically,
we can calculate the condition on the metabolic cost that ensures
that the producers are fitter than the nonproducers (ie., ¢, > ¢,):

K oK
e< W lOg [W} . [9]

Whereas for no metabolic cost producers consistently have a
stochastic advantage regardless of typical population size (Eq. 7),
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Fig. 2. Stochasticity can render nonproducers more susceptible to invasion
by producers than vice versa. Shown are plots of the difference in invasion
probabilities between producers X and nonproducers Y as a function of the
cost to birth for production, ¢, and good production rate py. The remaining
parameters are taken from Table S2. (Left) Analytic results for a single small
patch (Eq. 9). The critical cost ¢ for selection reversal, Eqg. 9, is shown here as a
black dashed line. (Right) Results from Gillespie simulations (46) of the sto-
chastic process Eq. 1, averaged over 2,000 runs.

for nonzero production costs, the population must be sufficiently
small that stochastic effects, governed by R~2, are dominant.
Fig. 2 and Fig. S2 show that the theory predicts well the trade-
off in the underlying stochastic model [1].

We have shown that stochastic selection reversal is more
prevalent when R is not large. Meanwhile our analytic results
have been obtained under the assumption that R is large, which
allowed us to use the diffusion approximation leading to Eq. 2
and aided the timescale elimination procedure that yielded Eq. 8.
We therefore expect that although stochastic selection reversal
will become more prominent as R is reduced, the quality of our
analytic predictions may suffer. Despite this caveat, it is the
small R regime, in which stochastic selection reversal is a more
prominent force, that is interesting to us. Small values of R are
associated with small population sizes. Although it is conceiv-
able that populations of macroorganisms may consist of a small
number of individuals, this limit is not so pertinent to the study
of microorganisms. In the next section, however, we show that
by incorporating space, the constraint of small population size
can be relaxed.

Spatial Amplification

In this section we consider a metapopulation on a grid: Each
subpopulation (patch) has a small size so that demographic
noise continues to be relevant locally, but the number of sub-
populations is large so that the overall population in the system
is large. This method of incorporating demographic stochas-
ticity into spatial systems has proved to be successful in the
modeling of microbial populations (7). We consider a grid of
C patches. The dynamics within each patch are given by the
transitions in Eq. 1 and coupled to the surrounding patches by
the movement of the phenotypes and public good. A patch will
produce migrants at a rate proportional to its density. Producers
X and nonproducers Y disperse with a probability rate m to a
surrounding region, whereas the public good diffuses into neigh-
boring regions at a rate D. Once again the diffusion approximation
can be applied to obtain a set of SDEs approximating the system
dynamics,
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dx,-- nxi'(t)

d—szx,-j (bx +rgij — K (x +yy) ) +m(Lx); +JT,

dy; ;i (£)

o =i (by +rai = K% +y5)) +m(Ly)y +=5= [10]
dg; g (1)

g =P =84 +D(Lg); + =5

where ij is the patch on row i and column j. The operator L is
the discrete Laplacian operator (Lx);=—4x; +X(_1) +Xs1) +
Xi(-1) +Xij+1)- If by >b,, the deterministic dynamics predict that
the producers will always go extinct.

First, we discuss some important limit case behavior for this
system. In the limit of large dispersal rate m and diffusion rate D,
the stochastic system behaves like a well-mixed population with a
spatial scale cR? (i.e., the spatial structure is lost). In this case,
as the size of the spatial system is increased, the effective pop-
ulation size also increases, and as a consequence selection re-
versal for producing phenotypes becomes less likely (Eq. 9).

We next consider the low-dispersal, zero diffusion limit. For
sufficiently low dispersal, any incoming mutant will first either
fixate or go to extinction locally before any further dispersal
event occurs. Because each dispersal/invasion/extinction event
resolves quickly, at the population level, the system behaves like
a Moran process on a graph (4), with each node representing a
patch. The “fitness” of a patch is the probability that it produces
a migrant and that that migrant successfully invades a homoge-
neous patch of the opposite type, following the approach used in
ref. 17. Denoting the fitness of producing and nonproducing
patches by W, and W,, respectively, we have

W,=mNip,, W,=mNyp,, [11]
where N; (i =x,y) is the mean carrying capacity of phenotype i in
a homogeneous patch, and ¢; are the invasion probabilities of a
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Fig. 3. (Left) Analytic results show that space amplifies stochastic selection
reversal in the low dispersal (m < 1), zero diffusion (D = 0) limit. The critical
maximum cost ¢ for selection reversal (Eg. 15) is plotted as a black dashed
line. (Right) Simulation results are shown for varied m and D, averaged over
2,000 runs. (Right, a) Results that in the low dispersal, zero diffusion limit
(m=3.7x 1078, D=0) match our theoretical predictions. (Right, b) The results
with a set of biologically plausible parameters (m=3.7x 107 and D=2.2x 107>
derived in Table S2). (Right, c¢) Results in a system with high dispersal
(m=3.7x10">, D=2.2x1075). (Right, d) The results of a system with high
diffusion (m=3.7x 107 and D=2.2 x 10~3). The number of patches is given by
C=16 and the remaining parameters are listed in Table S2.
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type i mutant in a type j #i patch. The fixation probabilities of a
homogeneous patch in a population of the opposite phenotype
can now be calculated using standard results (4). Let p; (i=x,y)
denote the probability that type i takes over the metapopulation
when starting from one patch of type i in a population otherwise
composed entirely of patches of the opposite phenotype. Then

1—r! . W, W,
, for i=x,y and rn=-= r=-2 12
1-r7€ P=%Y & W, ", 121

l

pi=

If we start from a single invading mutant, the probability that it
takes over the entire population (i.e., invasion probability) is the
product between the probability that it takes over its home patch,
¢;, and the probability that the newly invaded home patch fixates
into the metapopulation, p;:
Hx = ¢xpx> Hy = ¢ypy- [13]
In the infinite patch limit (C — ), p, and Py depend on ry, the
patch fitness ratio defined in Eq. 12. If r,>1, p,—»1—r;! and
p, — 0, whereas if r, < 1, the converse is true. This means that, in
the infinite patch, low dispersal, zero diffusion limit, the condi-
tion for the stochastic reversal of selection is weakened from

de>py to
NX¢x >Ny¢y' [14]

Spatial structure therefore has the ability to enhance the stochastic
reversal observed in the small well-mixed system. An approximate
analytic form for the above condition can be obtained in terms of
the original parameters:

K oK

Once again, our analytical results are well supported by simulations
(Fig. 3). The critical production rate for the invasion probability of
producers to exceed that of nonproducers has been decreased, as
predicted by Eqgs. 9 and 15. Producers can therefore withstand
higher production costs in spatially structured environments.

It is important to note that whereas Eq. 14 depends on the
mean number of producers and nonproducers on a homoge-
neous patch (N, and N,), it is independent of the number of
individuals in the entire metapopulation in the large C limit. The
interaction between these two spatial scales leads to results that
can appear counterintuitive. Demographic noise, as we have
discussed, leads to producing patches being “more fit” at the
patch level (Eq. 11). However, when a large number of patches
are considered, the demographic noise at the metapopulation
level is reduced. This leads to the system following trajectories
that appear deterministic at the level of the metapopulation,
even though the path they follow is entirely the result of de-
mographic stochasticity at the within-patch level (Fig. 4). Movie
S1 displays the individual dynamics of the patches that compose
the trajectory illustrated in Fig. 4.

Away from the small dispersal, zero diffusion limit, the dra-
matic selection reversal predicted by the analytical results is
clearly weakened (Fig. 3). Although selection reversal is still
found across a range of m and D values, if either dispersal or
diffusion is too high, the selection reversal breaks down. It is
therefore important to understand what order of magnitude es-
timates for the values of m and D may be biologically reasonable.

Insights from S. cerevisiae. In the following section, we attempt to
contextualize our model with reference to a S. cerevisiae yeast
system, which has been previously identified as a biological ex-
ample of a population that features public good producers and
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Fig. 4. Demographic stochasticity at the local “patch” scale profoundly al-
ters the system dynamics at the population level. Results are obtained from
stochastic and deterministic (R — o) simulations of Eq. 10 with a grid of
C=100x100 patches, py=1x10"%, £=0.02, and m=3.7x10"> and the
remaining parameters are taken from Table S2. Initial conditions are a single
producer and nonproducer on each patch. The initial (fast) transient collapse
to the SM occurs in the shaded gray region. Following this, the deterministic
system slowly moves along the SM until the nonproducers fixate, whereas in
the stochastic system, the producers experience a selective pressure in their
favor. For dynamics at the patch level, see Movie S1.

nonproducers. The model we have presented is general and
therefore it could not capture the full biological detail of this
particular system. For instance, it has been noted that some de-
gree of privatization of the public good occurs in even the well-
mixed experimental system (23), a behavior we do not consider in
our model. However, setting our model in this context can provide
some insight into the scenarios in which we might expect stochastic
selection reversal to be a biologically relevant phenomenon.

An S. cerevisiae yeast cell metabolizes simple sugars, such as
glucose, to function. However, when simple sugars are scarce, the
yeast can produce invertase, an enzyme that breaks down complex
sugars, such as sucrose, to release glucose (32). Invertase is pro-
duced at a metabolic cost and, because digestion of sucrose occurs
extracellularly, most of the benefits of its production are shared by
the population. Specifically in the case of S. cerevisiae, SUC2, the
wild-type strain, produces invertase, whereas the laboratory-cul-
tured mutant suc2 does not (33). In terms of our model parame-
ters, the baseline birth rates, b, and by, represent, respectively,
SUC2 and suc2 reproduction in the absence of invertase. This
could be understood as arising from yeast directly metabolizing
sucrose [a less energetically beneficial metabolic route (32)] or as
the result of some extrinsically imposed low glucose concentration
in the system. The rate » would then represent the additional birth
rate in the presence of invertase. The form of our specified re-
actions (Eq. 1) assumes that the presence of invertase leads di-
rectly to a yeast reproduction event. In reality invertase must break
down the sucrose into glucose and then slowly absorb the glucose.
We are therefore essentially assuming that the sucrose is abun-
dant, its breakdown by invertase instantaneous, and the glucose
absorption rapid and occurring in discrete packets, with each
packet absorbed leading to a reproduction event.

In the well-mixed system, our analytic predictions indicate that
stochastic selection reversal can occur only if the population is
very small. Because this is an unrealistic assumption in the case
of yeast cultures, we would predict that nonproducers should come
to dominate a well-mixed population. In a spatially structured
population, however, this constraint is relaxed because it requires
only small interaction regions. For S. cerevisiae, we can obtain
order of magnitude estimates for the majority of parameters in our
model, including the rate of public good diffusion (SI Order of
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Magnitude Parameter Estimates and Table S1). Using these esti-
mates together with our analytic results for the spatial public goods
system, we find that stochastic selection reversal could feasibly be
an important phenomenon for promoting the evolution of mi-
crobial public goods production in spatial settings (Fig. 3B). Given
this finding, we now consider a spatial experiment on S. cerevisiae
and ask how its results might be interpreted in light of the insights
developed with our simple model.

In ref. 33, SUC2 and suc2 were experimentally competed on an
agar plate. It was found that nonproducing suc2 could not invade
from rare (1% of initial yeast population) and in fact decreased
in frequency, becoming undetectable at long times (around 800
generations). This result suggests that in a spatial setting, in-
vertase-producing SUC2 yeast are robust to invasions, which is in
qualitative agreement with our theoretical predictions. The
experiments yielded an additional result, the appearance of a
hyperproducing mutant. This hyperproducing phenotype pro-
duced invertase at ~1.5 times the rate of standard producers
and existed at higher densities. The hyperproducer appeared to
evolve naturally and establish robust colonies during the com-
petition experiments between nonproducers and producers.
However, when separate competition experiments were con-
ducted between the hyperproducers and the producers, the
hyperproducers failed to demonstrate any appreciable fitness
advantage over the producers. This finding potentially suggests
an optimal invertase production rate, whereby the hyperpro-
ducers managed to establish and grow during the SUC2-suc2
competition experiments by exploiting nonproducing regions due
to a relative fitness advantage, but could not invade regions of
space occupied by producers. Interestingly, our model also pre-
dicts that an intermediate optimal production rate may exist,
depending on how the cost of production scales with the pro-
duction rate. Suppose a hyperproducer, U, produces at a rate
DPu =0appy, paying a metabolic cost a,e to its birth rate, such that
b,=b(1—ape). The pairwise invasion probabilities of each
phenotype can then be calculated (SI Pairwise Invasibility for
Nonproducers, Producers, and Hyperproducers). We define the
fitter phenotype in a pair as that with the larger invasion prob-
ability. The potential fitness rankings are investigated in Fig. 5 as
a function of p, and & (which we recall also alter p, and b,). We
draw particular attention to Fig. 5, Right, in which a; > a,,. In this
scenario, the hyperproducers pay a disproportionate cost for
their increased production rate compared with the producers.
This can be interpreted as diminishing returns for production. In
this case, there exist regions where the producer is the optimal
phenotype (regions A and B, in purple and cyan, respectively).
Specifically, region A displays a similar behavior to that observed
in ref. 33, in which producers win out over both nonproducers
and hyperproducers, but hyperproducers are more likely to in-
vade nonproducing populations.

Generality of Results

We have shown that demographic stochasticity can reverse the
direction of selection in a public good model. In this section we
show that the mechanism responsible for this phenomenon is by
no means particular to this model. We consider a general sce-
nario, with a phenotype X;, which is the focus of our study, and a
number of discrete ecosystem constituents, £;. In the public good
model for instance, we would label the public good itself as an
ecosystem constituent; however, more generally this could be a
food source, a predator, or anything else that interacts with the
phenotypes. The state of the ecosystem influences the birth and
death of the phenotype and in turn the presence of the phenotype
influences the state of the ecosystem, altering the abundances of
the constituents. We assume that the system lies at a unique, stable
stationary state, precluding the possibility of periodic behavior.
Suppose that a new phenotype, X,, arises. We assume that the
second phenotype is only slightly better at exploiting the ecosystem
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Fig. 5. Plots of the pairwise invasibility scenarios possible for nonproducing
(NP), producing (P), and hyperproducing (HP) phenotypes. Arrows point away
from the dominant phenotype in a pair, which is defined as that with a larger
invasion probability (Fig. S3). Nontransitive dynamics are not possible. It is pos-
sible, however, for an optimal intermediate good production rate to emerge
(cyan and purple regions), if ap <ap. In this scenario the hyperproducer receives
diminishing good production as a function of cost to birth rate compared with
the producer. (Left) a, = 1.3 and a, = 1.5. (Right) a, =3 and a, = 1.5. Remaining
parameters given in Table S2.

than Xj, although its influence on the ecosystem may be very
different. For instance, in the public good model, nonproducers
have a small birth rate advantage over producers, but do not
produce the public good. Which phenotype is more likely to invade
and fixate in a resident population of the opposite type?

The stochastic model for this system can be constructed in a
similar manner to the public good model; the dynamics are de-
scribed by a set of probability transition rates (analogous to Eq. 1).
We restrict the transitions by specifying that although the two
phenotypes compete, there is no reaction that instantaneously
changes both of their numbers in the population. This final con-
dition simply means that they should not, for instance, be able to
mutate from one type to another during their lifetime or to prey on
each other. A parameter R is introduced, to once again govern
the typical scale of the system. The model is analyzed in the
mesoscopic limit, by introducing the continuous phenotype (x;,x7)
and ecosystem (e;) variables as (x1,X2,e) = (1,1, n0,1,.) /R and
applying the diffusion approximation. For large but finite R, the
mesoscopic description takes the form

¥ =0 FO (x,e) — ex, F©) (x,e) + R~15, (1),
%2 =x2F O (x,e) + R~ 'n, (1), [16]
é,-=Fl-(x,e) +R_]ﬁi(t), Vi=3,...J,

where ¢ is small and governs selective pressure against X;. The
assumption that there is no reaction that instantaneously changes
the number of both phenotypes ensures that the correlation
structure of the noise terms takes the form

(m@Om () =8(t=1)x1HO (x,e),
(m (O (1)) =8t =) x2H O (x,€), (1 (1)) =0,

with & taken to be of order R~2. This assumption, made here to
isolate the effect of varying carrying capacity from any other
intraspecies dynamics, means that whereas the magnitude of
fluctuations in the number of both phenotypes is dependent on
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the state of the system, (x,e), the fluctuations themselves are not
correlated with each other. Restrictions on the microscopic
model that yield the above SDE description are addressed more
thoroughly in SI Generality of Results. The form of Eq. 16 makes
the nature of the system we describe more clear; it consists of
two competing phenotypes, which reproduce according to replica-
tor dynamics (1) with equal fitness at leading order in e.

In the special case £ =0, both phenotypes are equally fit, re-
gardless of their influence on the ecosystem variables e;. The
degeneracy of the dynamics in x; and x, ensures the existence of a
deterministic CM. We assume that the structure of F(®(x) and
F;(x) is such that the CM is one dimensional (there are no further
degenerate ecosystem variables) and that it is the only stable
state in the interior region x; > 0. A separation of timescales is
present if the system collapses to the CM much faster than the
stochastic dynamics. In practical terms, the timescale of collapse
can be inferred as the inverse of the nonzero eigenvalues of the
system, linearized about the CM (34), whereas the timescale of
fluctuations will be of order R~2 (35). When &> 0, the timescale
elimination procedure can still be applied if e~ O(R™?). The
effective one-dimensional description of the system now takes
the form

X =& D(x1) +R > S) +R7¢(0), (171

where the term D(x;) is the deterministic contribution to the
effective dynamics and S(x;) is the stochastic contribution,
whereas {(¢) is an effective noise term. The form these functions
take is dependent on F (x,e), F® (x, e;, and F;(x,e), as well as
on the noise correlation structure, H© (x,e); however, it is in-
dependent of the structure of the demographic noise acting on
the ecosystem variables (Eqs. S55, S56, and S66).

The core assumption we have made to derive Eq. 17 is es-
sentially that the system’s ecological processes act on a faster
timescale than its evolutionary processes. Even in this general
setting, insights about the system’s stochastic dynamics can still
be drawn (SI Generality of Results). If =0, the fixation proba-
bility of phenotype X is independent of the initial conditions of
the ecosystem variables e. In fact, it is equal to the initial fraction
of X in the population, n1g/(n10 +n2). The invasion probability
of mutant X; phenotype fixating in a resident X, population,
however, depends on the stationary state of the X, population;
this stationary state defines the initial invasion conditions (the
denominator for the fixation probability of X7). Denoting by N;
and N, the average numbers of phenotypes X; and X, in their
respective stationary states, we find ¢, =1/N, and ¢, =1/Nj,
generalizing Eq. 7. Therefore, for € =0 the phenotype that exists
at higher densities is more likely to invade and fixate than its
competitor, a consequence of its robustness to invasions. This
result holds for any choice of finite R. In an ensemble of dis-
connected populations subject to repeated invasions, we would
observe the emergence of high-density phenotypes if this phe-
notype does not carry a cost. Although this seems like a rea-
sonable and indeed natural conclusion, it is one entirely absent
from the deterministic analysis.

If £ > 0, general results for the phenotype fixation probabilities
cannot be obtained. However, if Ny >N, in the limit € >0 we
have shown that ¢, > ¢,. From this result, it can be inferred that
the term S(x;) is positive on average along the slow manifold
(Eq. S62). Therefore, if phenotype X; exists in isolation at higher
densities than phenotype X>, there will exist a stochastically in-
duced pressure favoring the invasion of phenotype X;. Mean-
while, by construction we expect D(x;) to be positive along the
SM because phenotype X; exploits the ecosystem environment
less effectively than phenotype X,. There is therefore a trade-off
for competing phenotypes between increasing their phenotype
population density and increasing their per capita growth rate.
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Note that the noise-induced selection function S(x;) need not be
strictly positive; indeed it may become negative along regions of
the SM. This behavior potentially allows for stochastically in-
duced “fixed points” along the SM, around which the system
might remain for unusually large periods of time. This result may
provide a theoretical understanding of the coexistence behavior
observed in ref. 36.

The term S(x;) is moderated by a factor R~ (Eq. 8) or, more
physically, by the typical size of the population. The stochasti-
cally induced selection for the high-density phenotype therefore
becomes weaker as typical system sizes increase. The trade-off
will be most crucial in small populations or, as illustrated in the
public good model, in systems with a spatial component. If the
phenotypes and ecosystem variables move sufficiently slowly in
space, the results of Eqs. 13 and 14 can be imported, with the
understanding that ¢; and ¢, must be calculated for the new
model under consideration.

It is worth noting that the precise functional form of ¢, and ¢,
identified in the deterministically neutral case (¢=0) is de-
pendent on the assumption that phenotype noise fluctuations are
uncorrelated. Although correlated fluctuations (for instance,
resulting from mutual predation of the phenotypes) can still be
addressed with similar methods to those used here, there is then
the potential for the emergence of further noise-induced selec-
tion terms (SI Generality of Results). Careful specification of the
phenotype interaction terms is therefore needed to determine to
what degree these additional processes might amplify or dampen
the induced selection we have identified.

Discussion

In this paper, we have shown that stochastic effects can profoundly
alter the dynamics of systems of phenotypes that change the car-
rying capacity of the total population. Most strikingly, selection can
act in the opposite direction from that of the deterministic pre-
diction if the phenotype that is deterministically selected for also
reduces the carrying capacity of the population. The methods used
to analyze the models outlined in this paper are based on the re-
moval of fast degrees of freedom (30). The conclusions drawn are
therefore expected to remain valid as long as the rate of change of
the phenotype population composition occurs on a shorter time-
scale than that of the remaining ecological processes.

By illustrating this phenomenon in the context of public good
production, we have revealed a mechanism by which the di-
lemma of cooperation can be averted in a very natural way: by
removing the unrealistic assumptions of fixed population size
inherent in Moran-type game theoretic models. The potential for
such behavior has been previously illustrated with the aid of a
modified Moran model (17) and a single-variable Wright-Fisher-
type model (18) that assumes discrete generations. However, we
have shown that the mechanism can manifest more generally in
multivariate continuous-time systems. Our analysis may also
provide a mathematical insight into the related phenomenon of
fluctuation-induced coexistence that has been observed in sim-
ulations of a similar public good model featuring exogenous
additive noise (36): Such coexistence may rely on a similar conflict
between noise-induced selection for producing phenotypes and
deterministic selection against them.

For biologically reasonable public good production costs, se-
lection reversal is observed only in systems that consist of a very
small number of individuals. However, by building a metapopulation
analog of the model to account for spatial structure, the range
of parameters over which selection reversal is observed can be
dramatically increased, as long as public good diffusion and
phenotype dispersal between populations are not large. Two
distinct mechanisms are responsible for these results. First, in-
cluding spatial structure allows for small, local effective pop-
ulation sizes, even as the total size of the population increases.
This facilitates the stochastic effects that lead to selection re-
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versal. Second, because producer populations tend to exist at
greater numbers (or higher local densities), they produce more
migrants. The stochastic advantage received by producers is thus
amplified, as they are not only more robust stochastically to in-
vasions, but also more likely to produce invaders. Away from the
low-dispersal, zero public good diffusion limit, the effect of se-
lection reversal is diminished, but is still present across a range of
biologically reasonable parameters. The analytical framework we
have outlined may prove insightful for understanding the simu-
lation results observed in ref. 37, where a similar metapopulation
public good model was considered. In addition to fixation of
producers (in the low dispersal-diffusion limit) and fixation of
nonproducers (in the high dispersal-diffusion limit), ref. 37 ob-
served an intermediate parameter range in which noise-induced
coexistence was possible. Although our model does not feature
such a regime, extending our mathematical analysis to their
model would be an interesting area for future investigations.
However, it must be noted that coexistence in a stochastic setting
is inherently difficult to quantify analytically, as for infinite times
some phenotype will always go extinct.

That space can aid the maintenance of cooperation is well
known (38, 39). Generally, however, this is a result of spatial
correlations between related phenotypes, so that cooperators are
likely to be born neighboring other cooperators (and share the
benefits of cooperation) whereas defectors can extract benefits
only at the perimeter of a cooperating cluster. This is not what
occurs in the model presented in this paper. Indeed, whereas we
have assumed in our analytic derivation of the invasion proba-
bility that dispersal is small enough that each patch essentially
contains a single phenotype, we find that the phenomenon of se-
lection reversal manifests outside this limit (see Movie S2 in which a
majority of patches contain a mix of producers and nonproducers).
Instead, producing phenotypes have a selective advantage due to
the correlation between the fraction of producers on a patch and
the total number of individuals on a patch, which provides both
resistance to invasions and an increased dispersal rate.

Most commonly in spatial game theoretic models of cooper-
ation—defection, individuals are placed at discrete locations on a
graph (40, 41). In contrast, by using a metapopulation modeling
framework we have been able to capture the effect of local varia-
tions in phenotype densities across space, which is the driver of
selection amplification in our model. Nevertheless, the question
that remains is which modeling methodology is more biologically
reasonable. The answer clearly depends on the biological situation.
However, in terms of testability, our model makes certain distinct
predictions. In ref. 41, producers and nonproducers were modeled
as residing on nodes of a spatial network, with a public good dif-
fusing between them. The investigation concludes that both lower
public good diffusion and lower spatial dimensions (e.g., systems on
a surface rather than in a volume) should encourage public good
production, essentially by limiting the “surface area” of producing
clusters. Whereas our investigation certainly predicts that lower
public good diffusion is preferable, stochastic selection reversal
does not require that the spatial dimension of the system is low. In
fact, the result used in Eq. 12 holds for patches arranged on any
regular graph (where each vertex has the same number of neigh-
bors) and thus could be used to describe patches arranged on a
cubic, or even hexagonal, lattice.

In our final investigation, we have shown that stochastic se-
lection reversal is not an artifact of a specific model choice, but
may be expected across a wide range of models. These models
consist of two phenotypes, competing under weak deterministic
selection strength, reproducing according to replicator dynamics
and interacting with their environment. Thus, the phenomenon
of selection reversal is very general; however, it depends strongly
on how one specifies a selective gradient. We take one pheno-
type to have a stochastic selective advantage over the other if a
single mutant is more likely to invade a resident population of
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the opposite type. Such a definition is also used in standard
stochastic game theoretic models (4). A key difference here,
however (where the population size is not fixed), is that the
invasion probability is not specified by a unique initial condition;
we must also specify the size of the resident population. We have
assumed that the invading mutant encounters a resident pop-
ulation in its stationary state. This is by no means an unusual as-
sumption; it is the natural analog of the initial conditions in a fixed
population size model. Essentially it assumes a very large time
between invasion or mutation events, an approach often taken in
adaptive dynamics (42).

If instead we assumed a well-mixed system far from the steady
state, our results would differ. For instance, suppose the system
initially contains equal numbers of the two phenotypes. For the
case when the two phenotypes have equal reproductive rates
(e =0), the phenotypes have equal fixation probability. For & >0,
the phenotype with the higher birth rate has the larger fixation
probability, regardless of its influence on the system’s carrying ca-
pacity. This apparent contradiction with the results we developed
in the body of this paper echoes the observations of » — K selection
theory (43): Selection for higher birth rates (r selection) acts on
frequently disturbed systems that lie far from equilibrium, whereas
selection for improved competitive interactions or carrying capac-
ities (K selection) acts on rarely disturbed systems. In addition,
r — K selection theory suggests that K-selected species are typically
larger in size and, as a consequence, consist of a lower number of
individuals (19). This finding indicates a further parallel with our
stochastic model framework, because selection for higher carrying
capacities requires that the typical number of individuals (of both
the low and high carrying capacity phenotypes) is small. Although
the mechanism that leads us to these conclusions is distinct, our
stochastic analysis provides a complementary view of r — K-selection
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theory, which may be applicable to simple microorganisms. In
exploring this analogous behavior further, future investigations
may also benefit from considering the results of ref. 15, where it
was shown that stochastically induced selection can change di-
rection near carrying capacity.

Although we have implicitly developed our results in the low
mutation limit, including mutation explicitly in the modeling
framework is possible. This would be an interesting extension to
the framework. In the well-mixed scenario, it is likely that the
inclusion of mutation will complicate the intuition developed
here: Although larger populations are more robust to invasions,
they are also more prone to mutations, by virtue of their size.
Whereas this result may be offset by the additional benefits
garnered in the spatial analog of the model, a complex set of
timescale-dependent behaviors is likely to emerge.

Finally, we propose a rigorous analytical investigation of existing
models that conform to the framework we have outlined; an ex-
ample is the work conducted in refs. 36 and 37, which we believe to
be mathematically explainable within our formalism. In the context
of induced selection, whereby deterministically neutral systems
become nonneutral in the stochastic setting, similar ideas have
already been extended to disease dynamics (16) and the evolution
of dispersal (44, 45). The extension of selection reversal to such
novel ecological models may provide further insight. Furthermore,
this general scheme may be of relevance to many other systems in
ecological and biological modeling, such as cancer, for which the
evolution of phenotypes that profoundly alter the carrying capacity
of a cell type can be of primary importance.
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SI Obtaining the SDE System from the Microscopic
Individual-Based Model

We begin with a model consisting of a discrete number of entities,
two phenotypes of a species, X and Y and a public good Q. They
interact according to the transitions

Xe2oX 4+ X, Y+X—B X, X+0—"F.Xx1X+0,

R
X—BoX+Q, YooY +Y, Y4+X—ARy,

Y+0By+Y+0, 020
[S1]

The term R~2 occurs in all terms involving two reactants. It thus
controls the interaction probability between instances of the phe-
notypes and the public good. Taking larger R decreases the inter-
action probability of phenotypes X and Y and the public good and
allows the populations to grow to greater numerical abundances.
The parameter R can thus be understood as a measure of the
spatial scale of the system; when R is increased, the probability
of interactions in the well-mixed system is decreased whereas the
number of individuals the system can contain is increased.

Let us denote n = (ny,ny,n,) the numbers of X, Y, and Q, re-
spectively. Then the dynamics of this system can be described by
the set of ODEs

POL) S Tl Pl 1

n'#n

—T(n'|n)P(n,t)], [S2]

where P(n,t) is the probability of the state being in state n at time
t, and T(r’|n), the probability transition rate, is the probability
per unit time of transitioning from state n to n’. Formally this is
known as the master equation (47). Given the reactions in Eq. S1
the probability transition rates can be expressed as

Tl( +1, ny,nq|nx,ny,nq) by, + Rznan,

T, (ny,ny +1,ng|ny, ny,ng) =byny + R2 — nyng,

Ts(ny —1,ny,nglny, ny,ng) = %nx(nx+ny) [S3]
Ty (ne,ny — 1,nglny, ny,ng) =}%ny (ny+ny),

Ts (ny, ny, ng + 1ny, ny, ng) =piny,

T (nx, ny, ng — 1ny, ny, ng) =dng.

Let us now make a change of variables into the scaled expres-
sions x= (x,y,q) = (ny,ny,n,)/R?. Substituting the probability
transition rates into Eq. S2, we find recurrent factors of
1/R? appearing in the resulting expression. These terms are
associated with the local transitions from state n to the sur-
rounding states. If R? is sufficiently large, the population
grows larger (as the crowding terms in Eq. S1 grow small).
We may then Taylor expand Eq. S2 in R™!, assuming that the
variables (x,y,q) are approximately continuous (28). Truncat-
ing at second order in R™, we arrive at a PDE for p(x,y, q,?) of
the form

Constable et al. www.pnas.org/cgi/content/short/1603693113

K

t R Zax
x=(x1,%2,%3) = (x,),9).

[54]

This is a diffusion approximation in a population genetics context
(22), but more generally is akin to the Kramers—-Moyal expansion
(28) or a nonlinear analog of the van Kampen expansion (47).
The forms of A(x) and B(x), given transition rates in Eq. S3, are
found to be

Ay (x) =x(by +rq —x(x+Y)), Ay(x)=y(by+rqg—x(x+y)),
Aq (x) =D~ 5%
[S5]
and
By(x) =x(by +rq +kx +xy), By(x) =y(by +rq+Kx+xy),
By (x)=px+dq, By=0 V i#].
[Se6]

Further, it can be shown that the above PDE is equivalent to the
set of Itdo SDEs (48)

dx 1

$=A(x) +E"(1)’ [S7]

where 7=tR? and #(t) are Gaussian white noise terms with zero
mean and correlations

(ni(o)n;(z')) =8(z = ') B (x). [S8]

Note that the correlations are multiplicative and thus dependent
on the state of the system.

SI Obtaining a One-Dimensional Effective Public Good Model

In this section we seek to identify and remove the fast modes of the
SDE system (Eq. S7) and thus obtain an effective one-dimensional
description of the dynamics. We make use of methods of fast-
mode elimination described in ref. 30. First, we note that the
deterministic nullcline for g is given by

Pxx

5 (X)) [S9]

q=

Therefore, if the production and decay of public good occur much
faster than the processes associated with the phenotypes, we
would expect the public good to quickly attain this value, after
which its dynamics would be slaved to those of x and y. Note
that deterministically, substituting Eq. S9 into Eq. S5 recovers a
Lotka—Volterra competition model for two competing species.
To make further analytic progress, we begin by considering the
quasi-neutral limit in which b, =b, =b. Under these conditions,
the deterministic system exhibits a CM given by Eq. S9 and

[bS — (6 —1py )x]

o =Zy(x).

y= [S10]

The CM is stable for x> rp,, and we assume that this condition
holds throughout this paper. Calculating the intersection of the
CM at the boundaries y =0 and x =0 allows us to determine the
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mean population size in the quasi-neutral (¢ =0) limit when it
consists of only producers and nonproducers, respectively:

b5
O RO KO = 11
N, e K= Ges) [S11]
bs
NY=RK", KU=_—-|. S12
=R, K= [S12]

These parameters will be useful in the following analysis.
Deterministically, the system comes to rest on a point along the
CM (defined by Eqgs. S9 and S10), which depends on the system’s
initial conditions. When stochasticity is included, the CM ceases to
exist in any true sense. However, when the noise is small [already
assumed in the derivation of SDEs (Eq. S7)], we can say that far
from the CM, we expect the dynamics to be dominated by the de-
terministic collapse to the CM, whereas in the vicinity of the CM, we
expect noise to play a more important role, driving the slow change
in population composition until one or the other of the phenotypes
fixates. We wish to exploit this timescale separation and obtain an
effective description of the dynamics in terms of a single variable.
To begin, we note that the stochastic dynamics along the CM have
two components. First, noise can move the system neutrally along the
CM. Second, noise can take the system off the CM, at which point we
expect the deterministic component of the dynamics to become more
prevalent, driving the system back to the CM. To capture the effect of
both of these processes on the effective dynamics along the CM, we
implement a nonlinear projection of the stochastic system to the CM.
Essentially this assumes that fluctuations that take the system away
from the manifold are instantaneously mapped along deterministic
trajectories back to the CM. To formalize this, the mapping
z=f(x,y,q) is introduced, where f(x,Z,(x),Z,(x))=x; that is, z
gives the position on the CM, parameterized by x, which intersects a
deterministic trajectory beginning at (x,y,q). The mapping can be
determined analytically from the observation that the quantityx/y in
Eq. S7 is invariant in this quasi-neutral (by = b,) scenario. Therefore
z X béx

P B s13
g (6k — pr)x + oky [513]

The effective dynamics for z can now be straightforwardly calcu-
lated by differentiating Eq. S13 with respect to . We must note,
however, that because the original SDE system is defined in the
1to sense, the normal rules of calculus no longer apply. Applying
Ito’s rules of calculus appropriately (30, 47), we find that the
effective dynamics along the CM take the form

1
=% ()+ <), [S14]
where
1/0%2 o’z
5(z)=7<7Bxx(x)+—B (x)> > 818
2 a2 W ) sz a2,

= 21(7;1 { 1+ bz—z[bi)‘(prr — 8K) + pur (pyr — 6k)2] },

KO —K

and
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(0¢))=o(t=1)B(2),

2
< %} Bw(x)>

1
ZZ{b + Ry [b252 (Bpyr — 6k) + bp,rd(3pr — 26K)z

with

s

x=zy=Z,(2).q=Z4(2)

[S17]

+p2r? (pur — 6k)2%] },

[S18]

Note that because the mapping in Eq. S13 is independent of ¢,
both Eq. S15 and Eq. S17 do not depend on the noise correla-
tions in q.

Whereas the deterministic system features no dynamics along
the CM, the effective SDE (Eq. S14) does feature a drift in the
mean state, embodied by S(z). Understanding the origin of this
induced drift term requires considering the following. We en-
visage fluctuations arising from a single point on the CM, x()
which take the system to a point off the CM, x(!) (Fig. S1). The
point x(1) is clearly stochastic, but its distribution is approxi-
mately Gaussian, with a variance defined by B(x(?)). The fluc-
tuation 1s now mapped back along a deterministic trajectory to a
point x? on the CM. The location x® is also stochastic [de-
pendent as it is on x(V)] and has its own distribution. The pres-
ence of the term S(z) in Eq. Sl4 is indicative of the fact that the
mean of the distribution of x is not x(¥; fluctuation events on
average are mapped back to the CM With a preferred direction,
inducing drift along the CM. Note that S(z) is positive along the
length of the CM, which is defined on the interval [0, K }

We now turn our attention to the case when £ > 0. Aslong as ¢
is small, a separation of timescales is still present, although now
no CM exists. Instead there is a SM, to which the deterministic
system quickly relaxes, before slowly moving along it until phe-
notype Y fixates. The equations for the population size at the
boundaries of the SM are formally given by

N.=RK,, K.= (ﬂ) =K +O(e), [S19]
OK —IDx
_R _ (B8 ) ko
N,=RK,, K, = Fr— =K" +O(¢). [S20]
To proceed with the stochastic calculation, we assume & ~ O(R™?)

and work order by order in R~!'. At leading order, the equation
for the SM is identical to that for the CM, Eqgs. S9 and S10. The
mapping to the SM is also unchanged at leading order from the
quasi-neutral case (Eq. S13). We proceed as before to obtain an
effective description of the system dynamics in terms of z (30),
now obtaining the dynamics

— D)+ S(2) + I%g(t), [s21]

where
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x=zy=Zy(2),q=Z4(2)

D(z)=- (%Axm + 34 (x))

_ OK — Dy’

- ()
b

=—7(K"-2),

and S(¢) and {(¢) retain their form from the quasi-neutral case,
Egs. S16 and S18. The function D(z) is the deterministic con-
tribution to the dynamics along the SM. This expression is what
would be obtained using standard fast variable elimination
techniques on the deterministic system. From Eq. S22, we
can see that D(z) is positive along the length of the SM and
therefore acts (as we would expect) to increase the selective
advantage of the nonproducers, phenotype Y. There is there-
fore a conflict between the two components of the drift in
the system. The term D(z) works against producers along the
length of the SM, whereas S(z) creates a selective pressure in
favor of producers. Ultimately, which term is more prevalent is
dependent on the parameters ¢ and R (Eq. S21); small R leads
to a small population size in which stochastic effects are stron-
ger, and so producers are more likely to be selected for. In
contrast, when the deterministic cost for good production is
increased, the nonproducers have an increased advantage over
producers.

Adopting the notation used in the main text, in which we setz =x
(which is valid on the CM and SM at leading order), the expression
for the SDE (Eq. S21) can alternatively be written

[S22]

i= I%x (Kx(“) —x) (% Flx) - s) + I% ), [S23]

where

K,EO) _ Ky(o)
2 2
(K;U)> <Ky(0) )

SI Probability of Fixation for the Reduced Public Good
Model
The fixation probability for a phenotype in a single variable system
can be calculated using standard methods (28). To conduct the
calculation, we need expressions for the absorbing boundaries of
the problem. For the reduced system given in Eq. S21, these lie at
z=0 andz K. The fact that the boundary for the problem exists
atz= KX , rather than at z=K,, is a consequence of the order
to which we are working in e. At this order the SM is ap-
proximated by the expression for the CM, which 1ntersects the
absorbing boundaries x=0 and y=0 at z=0 and z= K,C , re-
spectively. Denoting Q(z) the fixation probability of producmg
phenotype X given an initial frequency zp on the CM/SM, the
fixation probability can be conveniently be expressed as

KOO+ (KO -KO)]. 1524

_ v | [2-ERDE)+SE))
QE)= % o YE=P L/ B “ }
[S25]

Substituting for D(z), S(z), and B(z) from Egs. S22, S16, and S18,
we find
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(aNK2,)
G(z0) =exp ( KOKO & (K,EO) _ Ky(o)) Z)

[S26]

The nature of these expressions can be understood more intui-
tively if we move from considering the initial frequency of X
on the CM, zg=n/R?, to considering the initial fraction of
phenotype X on the CM, fy. The fraction and number of phe-
notype X on the CM are related by

(0) 5(0)
z Kx K, fz(]
fos———, - z= . . I827
z +Zy (Z) K)g()) _ (KX(U) _K)SO))fz()
Substituting this into Eq. S26, we find
1—exp [sNy(0> fzo]
0) = T 20)|g=0 =J20-
O(f0) O(f0)l.=0 = [S28]

1—exp [sNy(U )]

On first appraisal, the fixation probabilities in Eq. S28 appear to
share the form of the well-mixed Moran model with weak selec-
tion. There is, however, one crucial distinction: The relation
between f;o and (xo,Y0,q0) is dependent on the form of the
CM/SM and is not necessarily symmetric under the interchange
of X and Y. For instance, let us consider the quasi-neutral case
(e =0) with the population initially consisting of a mutant X in
a population of the Y phenotype in its stationary state. Then
foo=1/N,. In contrast, if the mutant is of phenotype Y, and
the resident population consists of phenotype X in the stationary
state, f,o=1—1/N,. Because N, and N, are distinct, these fre-
quencies are not the same, and Eq. S28 is not symmetric under
the interchange of phenotypes, undermining its apparent simi-
larities to the Moran model.

In this section a crucial aspect of the selection reversal has been
elucidated. The selection reversal along the SM is a result of the
differing densities at which the populations of X and Y pheno-
types reside in isolation. In a deterministic system, we would
define the fitter phenotype as the one that fixates at long times.
In a stochastic Moran-type model, the fitter phenotype is defined
as that with the greater invasion probability. Because Moran-
type models feature a constant population size, N, the invasion
probability of a mutant phenotype is defined by a unique initial
condition, a single mutant, and N — 1 residents. In systems such
as the public good model discussed in this paper, the invasion
probability is no longer defined uniquely by the specification of a
single invading mutant; we must also define the size of the res-
ident phenotype population and the public good density. If the
system has been allowed to relax to a stationary state before the
mutant is introduced, then selection reversal along the CM may
be present, and it is possible for the producing phenotype to have
a larger fixation probability than the nonproducing phenotype.
Thus, the producing phenotype may be fitter.

SI Pairwise Invasibility for Nonproducers, Producers, and
Hyperproducers

In this section we explore the pairwise invasibility of three sep-
arate phenotypes, nonproducers, producers, and hyperproducers.
We begin by noting that, under the assumption that the birth rates
differ by only a small amount from phenotype to phenotype, the
invasion probability of phenotype i in a resident population j, ¢y,
can be expressed as
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1 —exp[(bi —bj)/<KNj(0)ﬂ

1 T —expl(bi—b) RN

[S29]

We therefore define phenotype i as fitter than phenotype j if
& > ¢j;- Let us now explicitly express the birth rates of each
of the phenotypes as

Nonproducer: b,=b, Producer: b,= b(1-¢), [S30]
Hyperproducer: b, = b(1 —ape).

We now wish to obtain an expression for the critical costs to birth
rate & at which producers are fitter than nonproducers, hyperpro-
ducers are fitter than nonproducers, and hyperproducers are fitter
than producers. To do this we must solve ¢;; = ¢fli for ¢ for each
pair of phenotypes. An analytic solution is available if we set
&= &R~2 with & of order one and Taylor expand in R-2. Truncating
at first order, we find that the critical cost for species i to be fitter
than species j, g is given by

K log|[(pir — 5x) / (pjr — k)]

T )R o

We note that this provides eight different possible scenarios of
fitness ranking, described in Fig. S3. Substituting in our equa-
tions for the birth rates, Eq. S30, these expressions become

K oK
iy = 78 {-m} , [S32]
K oK
= 1
b = 0, bR2 08 { DPul — 51<] ’ [833]
B = Jog [T [S34]
“ ™ (4, — 1)bR? ' — 0K

Clearly the exact scenarios that emerge for a given set of param-
eters depend on the relationship between p, and p,,. We make the
assumption

Pu=appPx- [S35]
For a, > a;, the hyperproducer pays a discounted cost to its birth
rate for its additional good production. In this situation, only sce-
narios C—F are possible in Fig. S3. It is always better to be a hyper-
producer or a nonproducer, depending on the production rate
px and e. This “all or nothing” result makes intuitive sense; if the
hyperproducer produces much more than the producer, but pays
only fractionally more to its birth rate, any region in which produc-
tion is favored will be disproportionately advantageous to the hyper-
producers. In contrast, if a, <ay,, the hyperproducer receives
decreasing production returns as a function of the cost it pays to
birth in comparison with the producer. In this case, scenarios in Fig.
S3 A and B and Fig. S3 E and F are possible. Either producers or
nonproducers are favored, and hyperproducers are never favored.

S| Generality of Results

We begin by specifying in a very general way the dynamics of an
arbitrary individual based model (IBM) with m distinct types of
constituent, fully described by a set of u reaction rates. The model
can be expressed in chemical reaction notation as

m m
> auXi—5y " buXi, Yu=1,...u, [S36]
i=1 i=1
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where a,; and b,; respectively specify the reactants and products of
the uth reaction, and p, are the reaction rate constants (for exam-
ple, Eq. S1). The stoichiometric matrix is defined by v;, =b,; — a,;,
whose elements give the change in number of the ith species due to
the pth reaction. Together with the rate constants r,, the stoichio-
metric matrix allows us to express the transition rates

m .
T,(n+v,ln)=r, H a,,,-%, [S37]

i=1

where R? once again is a controlled measure of how often con-
stituents interact (Eq. S3). In the well-mixed model, it therefore
directly controls the typical area of the system. Together with the
master equation [S2], the full stochastic dynamics are specified.

With a general notation now in hand, we now begin to define
the specific type of system we will analyze. We consider a system
consisting of two phenotypes, X; and X,, who interact with a set
of discrete ecosystem variables X;, for i=3, ..., N. The state of
the system at any time is given by the number of each phenotype
and ecosystem constituent n = (n1,n2,n3, ...,ny). The situation
we envisage is as follows: Whereas the interplay between the
phenotypes and the ecosystem is relevant for the dynamics, we
are primarily interested in the evolutionary dynamics and out-
come of competition between the two phenotypes. We make the
following assumptions on their dynamics;

i) Each phenotype birth and death event is proportional to the
number of that phenotype:

If v1,#0, thena, >0, and if u,,#0, thena,>0.

[S38]

ii) The phenotypes are very similar in their utilization of the
ecosystem. For each pth reaction that changes the frequency
of X7, there therefore exists a similar reaction u’ that changes
the frequency of X, such that

Vil = Vo (r,, + O(s)). [S39]

iii) There is no reaction that simultaneously changes the fre-

quencies of the phenotypes (i.e., no cannibalization or simul-
taneous killing):

v, =0 Vo [S40]
The phenotypes may, however, differ significantly in their effect on
the ecosystem, so that one phenotype may deplete or increase
ecosystem constituents in an entirely distinct way from the other (for
instance, the production of a public good by phenotype X in Eq. S1).

As R is increased so too does the number of each phenotype
and ecosystem constituent. If R is sufficiently large, once again a
system-size expansion of the master equation can be conducted.
Making the change of variables x; =n1/R?, x;=n,/R? and
e;=n;_»/R?, we obtain the set of Itdo SDEs

da_ Tro M 1
=0 [FO o) = eF V(o) |+ i 1),
de (0) 1

— — S41
5 0FY (x,e) + an(t), [S41]
de,- 1 .
E—h[(.‘f,@)ﬁ‘ﬁﬁ[(f), \7’1—1,N

The deterministic contribution to the SDESs can be determined
from the transitions via
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X1 [F(())(x e)—eFW ] Z”ll‘ [ +Vﬂ’(x e)T],
[S42]

X F© Zuzﬂ [ (x,e) +v”‘(x,e)T]’
[S43]

u

hi(x,e) = Z Vi Ty [Rz(x, e’ + v, ’ (x, e)T] .

p=l1

[S44]

Note that the relationship between Eqs. S42 and S43 is controlled by
assumption ii. The correlations in the noise meanwhile are given by

(O () = 50 —1) ggnzvl R@we)+u,l(we)],  [845]
mOma(0)) =51 —1) ggnzvz,, Rw.e)+,l(we)],  [S46]
(i () (1)) =0, [S47]
(m(0p;(1)) =8(t—1 llmZu,,,v(,+2 T, [R(x,e) +v,|(x,e)],
[S48]

B (t))=6(t-1) hmZsz w2 Tu[R(x,€) +v,](x,€)],

[S49]

at leading order in e. The lack of noise correlation between the
phenotypes, Eq. S47, is a consequence of assumption iii. As-
sumption i allows us to rewrite Eqs. S45 and S46 as

—t)x1H(x,e),
—t")x2H (x,e). [550]
An example of a system where this condition is not enforced is
explored in SI Hllustrating Generality with Reference to a Comple-
mentary System: The Stochastic Lotka-Volterra System.

To begin our analysis of the SDEs, a quasi-neutral limit is con-
sidered in which e =0. Then the deterministic ODEs for the system
(the SDEs in the limit R — o) lead to a manifold of fixed points
associated with the focus phenotypes. We now make two additional
assumptions:

v) There exists a single stable, well behaved, manifold.
vi) This manifold is one dimensional and so can be parameter-
ized by a single variable.

We then choose to parameterize the manifold in terms of x;,
which for clarity we label z on the CM. The CM is then defined
by the set of equations

x1=z, x=25(2), ei=Z,(z) Vi=2,...N. [S51]
The system dynamics are now entirely analogous to those of the
public good model in the quasi-neutral limit. Deterministically,
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the system comes to rest at a point on the CM (which depends
on the system’s initial conditions) at which it stays indefinitely
and, when stochasticity is included the system, moves along the
CM until one of the phenotypes fixates. A timescale separation is
present as long as the composition of the population changes on
a slower timescale than that of the collapse to the CM. In prac-
tice, the timescale of the collapse to the CM can be inferred from
the eigenvalues of Eq. S41 linearized about the CM. The mag-
nitude of the smallest nonzero eigenvalue is indicative of the
slowest component of collapse to the CM (34). This should be
much larger than the timescale at which the system moves along
the CM, which is of order R~! (35).

To implement the timescale separation, a nonlinear projection
is applied to the system that maps fluctuations back to the CM.
This can be seen to be equivalent to transforming into the de-
terministically invariant variable whose existence is guaranteed by
the existence of the CM (31), setting the dynamics in all other
variables equal to zero, and evaluating the variables themselves
on the CM. What form does this mapping take, in the quasi-
neutral limit, for Eq. S41? Because the dynamical equations for
the phenotypes take on the form of degenerate replicator
equations in the limit € — 0, the ratio x; /x, is deterministically
invariant, regardless of the other parameters. Therefore, the
nonlinear mapping may be obtained by solving the following
equation for z:

==, - z= [S52]

Y (x1,x2).

The resulting effective description for the quasi-neutral system on
the CM can be denoted

=1123(z) +\/il_e¢(z).

Note that whereas the deterministic system evaluated on the CM
had no drift dynamics, the reduced system may. Mathematically,
this is a consequence of the fact that the equations are defined
strictly in the Ito sense (from the underlying IBM) and therefore
the normal rules of calculus do not apply. Instead, any nonlinear
transformation induces a drift, in general given by

1< &z N/ %
0= {2 (axid?ﬁBij) ’ ; (aeiaej Beij)

[S53]

X1=22=25(2),6i=Z.i(2)
[S54]

However, because the mapping z is independent of the ecosystem
variables e (Eq. S52), Eq. S54 can be simplified to

1/ &
)<L (—Bi-) [s55]
2 zy: ;0% ' x1=2,2=2(2).ei=Zi ()
The form of the correlations in {(¢) is now given by
B(z)—zz: %1 1% B [S56]
AN A T ’
y J x=2,=25(2),€i=Z.i(2)

where once again we have taken advantage of the property
(dz/de;) =0 for all i.

In this very general scenario, what inferences can we make
about S(z)? To answer this question, it is convenient to return to
our original SDEs, Eq. S41, and implement the timescale sep-
aration in a different fashion. We begin by transforming into
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variables measuring the total size of the x; and x, population and
the fraction of type x;:

X1
x1+x

Nr=x14+x, fi= - x1=fiN7, x=Nr(1-f).

[S57]

Applying this transformation, taking care to account for the im-
pact of Ito calculus, we arrive at the following SDEs for the
system:

Gh_ 1N P

By +—iiy (t
&t TR 2 amag DRI,
i,j=1
S - [S58]
T_NTF (x,e)+1—e172(t),
de; 1-
?t’:hi(x,e)+§ﬁ,«(), vVi=1,...N

By conducting the transformation, we immediately notice a few
things. Most trivially, the forms of the noise correlations are
now altered in all variables. Second, because the transformation
into the variable Ny was linear, its governing SDE contains no
noise-induced elements. Finally, the nonlinear transformation
into fi has resulted in a noise-induced drift term. This drift term,
however, is dependent only on the noise correlation structure
between x; and x,. Evaluating the dynamics for Ny and e on
the CM and substituting in the remaining expressions from
Eqgs. S47 and S50, we obtain the following one-dimensional
SDE for fi,

dfi 1.
E—_'ll(t)a

[S59]
where 7, (¢) is evaluated on the CM. There are no deterministic
dynamics in our reduced-dimension description of fj. This result
is a consequence of assumptions ii and iii. The equation for the
fixation probability of phenotype X; given an initial fraction fio
on the CM, Q(f10), is then, regardless of the noise form,

O(fi0) =fio-

Crucially however, f; is evaluated on the CM, which may vary
depending on the constitution of the population:

[S60]

X10
x10 +Z(x10)"

Joo= [Se1]

If [dZ;(x10)/dx10] <1, then the total phenotype population de-
creases with increasing xy9, and phenotype X; has a larger in-
vasion probability than X,. From this we can infer that S(z) will
be positive on average along the length of the CM:

N /R?

/ S(z)dz>0.

z=0

[S62]

Therefore, the phenotype with the higher carrying capacity will be
stochastically selected for in this quasi-neutral case, regardless of
their interaction with the environment. We note once again that
this result is in general dependent on assumption ii. If assumption
ii does not hold, then there will be correlations between the
fluctuations #,(¢) and #,(¢) and, rather than the equation for
the time evolution of f; featuring no mean drift (as in Eq.
S59), there will be a noise-induced drift term favoring one or
the other of the phenotypes. The exact form of this term will be
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highly dependent on the exact form of the interactions between
the phenotypes, a full treatment of which lies outside the scope
of this paper.

Now suppose that £ >0, so that the system is nonneutral. Now
no CM exists. There is no line of deterministic fixed points and
therefore no invariant variable to project our variables onto and
reduce the problem. However, under the assumption that ¢ is
small there is still a separation of timescales. If ¢ is sufficiently
small, the slow manifold (and the projection to it) can be ap-
proximated by the results from the quasi-neutral case (Egs. S51
and S52), plus an & correction. A perturbative analysis can
thus be conducted, and, under the assumption the e * O(R™2),
at leading order we have

i=—eD() + % S() + ).

R [S63]

The form of S(z) is unchanged from Eq. S54, whereas the new
deterministic contribution to the drift takes the form

P02 (%)

i=1

[S64]

X1=2X2=2(2),e=Z,(2)

Once again, however, the projection is simply a function of x; and
X3, and so

dz
dxy

dz

dx

dz
— e FDZZ
&Xq dx1)

D(z)=- (xlF(O) () ——+x2F O (x)

[S65]

x1=2,00=25(2).6=Z.(2)

Finally, we also know that in the limit ¢ — 0 this deterministic
contribution to the dynamics on the CM, D(z), should disappear.
Therefore, the first two terms in the above equation must cancel,
leaving us with

D) =ez (F<1>(x) dz)

e [S66]

x1=zx=Zi(z)

We now have a much simpler system to deal with. Say that F( (x)
is strictly positive. Then this will be a term that consistently
decreases the value of x;. Based on physical arguments, we
would expect that, regardless of the form of ¢, D(z) must be
positive. We still require the exact form of z (Eq. S52) to make
analytic progress and specific predictions. Generally, however,
we have shown that S(z) will be positive as long as species X
has a larger carrying capacity (subject to the above conditions).
A consideration of Eq. S63 shows that even when the system is
nonneutral, for sufficiently weak selection/small R, there will be
a trade-off between stochastic “strength in numbers” and deter-
ministic costs for high-density behavior.

SI lllustrating Generality with Reference to a
Complementary System: The Stochastic Lotka-Volterra
System

In SI Obtaining a One-Dimensional Effective Public Good Model
it was noted that deterministically the public good model reduces
to a competitive Lotka—Volterra model under the elimination of
the fast public good dynamics. However, it is important to note
that although they may be deterministically equivalent at long
times, due to alterations in the demographic noise structure the
two systems have distinct behaviors. Despite this, the qualitative
picture remains the same; for the quasi-neutral system, the fix-
ation probability of each type is simply proportional to its initial
fraction in the population, whereas when selection is introduced,
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there is playoff between stochastic and deterministic effects. To
illustrate this finding, we investigate the stochastic Lotka—Volterra
competition model (SLVC), derived from first principles.

In this section we analyze a stochastic Lotka—Volterra com-
petition model, using the methods developed in SI Generality of
Results. We assume a population composed of two phenotypes,
X; and X, whose numbers in the system are measured by N,.
The phenotypes are born, die, and compete with each other. In
particular, we define the system to be governed by the probability
transition rates

T1(n1 + 1, n2ln1,n2) =biny,

( )
Ty (ny — 1,nz|ny,n2) =ding +R2 ni+ Rznlnz,
T5(ny1,ny+ 1ny,np) =bony,
Ta(ny,np —1ny,ny) =dan, +R2n1n2+R2 n3.

Together with Eq. S2, this system fully specifies the stochastic
dynamics. Taking the limit of large R, we can once again obtain a
mesoscopic description of the system,

dx 1

ditlle (b1 —d1) —c1x1 —c2x2) +tRM (1),
[S67]

a2~ ) e — ) + ()

dr =X2((02 2) —C1X1 —C2X2 R’72 >

where 7;(¢) have correlation structure Eq. S8 with the Bjj(x) term

given by

Bii(x) =x1((b1 +d1) +cix1 +c2x2),
By (x) =x2((b2 +d2) + c1x1 + c2x2), [S68]
Blz(x)EB 1( ) 0

Note that the noise structure is not the same as that in Eq. S50;
two phenotypes with an equal effective reproduction rate
by —dy =b, —d> have the same deterministic fitness, but distinct
multiplicative noise. Phenotypes that are reproducing and dy-
ing more quickly are subject to greater noise as they have a
larger rate of population turnover. We will, however, proceed
to consider this more general scenario to illustrate what can
happen when this assumption is not enforced. Finally, we im-
pose a separation of timescales by setting
b1 —dl =b(1—8), bz—d2=b. [S69]
A CM thus exists if e=0 and an SM when ¢ is small. The pa-
rameter b is an effective birth rate encompassing birth and death,
whereas ¢ is a fitness cost paid by phenotype X in terms of either
a decreased birth rate or an increased death rate, relative to
phenotype X;.
In the case ¢=0, the system is quasi-neutral, and so a CM
exists. The equation for the CM x, =Z,(x;) (Eq. SSl) and 1ts

intersection with the boundaries x, =0 and x; =0, K ) and K2 s
respectively, are
_1 o_b  Lo_b
Zow)= (b —c1x1>, K'=C K= [S70]

The parameters Kl(o) and KZ(O) give the frequency of X; and X,
phenotypes in isolation. We assume that c¢; >c¢; and thus that
phenotype X exists at higher densities than phenotype X,. Fi-
nally, the mapping from any point (x;,x2) to a coordinate z=x;
on the CM is determined from Eq. S52:
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b
z=— 2L [S71]
C1X1 +Cxx2

We can now obtain expressions for D(z), S(z), and B(z) directly
from Egs. S66, S54, and S56:

D(z):-z(é—clz),
Sz(b=ciz)(c2(b+dz) e (b+ar)),

B(2) =[%z<5 —clz) [z(cz (5 +d2) -y (l; +d1>> +b(dy +ﬁ)]~
[S74]

[S72]

[S73]

The equation can now be solved to calculate the fixation proba-
bility of phenotype X; along the CM. In terms of the initial
fraction of X, f;, we find

1—x(f1)
Q=i %ol
-\ 7-0 [S75]
o[l
di+b '(1-fi) +iKS
where 6 is a parameter given by
[S76]

(0) 1 (0) 27
(i K1~K2()R2be )
K (dr+5) K" (d2 +5)

Let us consider the special case € =0. The fixation probability
then becomes

fi (d2 + 15)

Q(fl”e:o:dl(l—fl) +dofy +b

[S77]

The species with the lower death rate (and birth rate, because b is
fixed) has a greater probability of fixation than the species
with the higher birth rate/death rate. This insight, made in
refs. 9 and 10, is a result of the higher levels of noise experienced
by the phenotype with the high birth and death rates. The higher
levels of demographic noise experienced by the short-lived phe-
notype make it easier for the longer-lived phenotype (lower birth/
death rates) to invade and fixate. For the purposes of this paper,
we ignore such effects to focus on systems in which the carrying
capacity of the phenotypes alone is responsible for the differences
in noise experienced by the phenotypes on the CM/SM.

To this end, we now focus on the case by =b, =b, di =d> =d.
In this case, Q(fi)|..o =f1, and Q(f1) in general becomes

_1-x(f) _ K _g
Q(fl) - 1 _)((1)3 )((fl) (K]( f ) —|—f]K2 > [S78]

where 6 is now given by

az(H

The invasion probabilities ¢; and n, meanwhile are given by

KOKVR (b - d)e) _ 791

(K -K{")b
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d1=0(N;"), ¢,=1-0(1-N7"). [S80]
We can use the above expressions to obtain an approximate value
for the maximum cost to birth rate that can be paid such that se-
lection reversal is observed. Assuming N;! and N;! are of order &

and Taylor expanding in &, we find the cost to birth must obey

EN U RN
N, \b—d N, ) F

for the direction of selection to be reversed. This is analogous to
Eq. 8 in the main text.

[S81]

S| Order of Magnitude Parameter Estimates

In this section we seek to identify an illustrative set of parameters
to use in the model in order to emphasize that the insights de-
veloped are biologically reasonable. We wish to obtain order of
magnitude estimates for the set of parameters b, py, pu, 1, 6, K,
R, m, and D. We choose the yeast S. cerevisiae as our model
organism. Whereas our model is more physically realistic than
many mathematical public good models, we note that there are
still choices that must be made in relating this physical system to
our general framework.

Our model is constructed such that the uptake of one con-
stituent of the public good, O, by a phenotype, results in a re-
production event. In the context of S. cerevisiae, the type Q is
thus shorthand for the amount of invertase that must be present
in the system to break down sucrose into sufficient glucose for a
reproduction event of the yeast. Let us define o to be the scaling
between 7, and the total number of invertase molecules, such
that the number of invertase molecules is on,. To understand
the relationship between our model parameters and physically
measurable parameters, we begin by considering a simplified
ODE system of our model:

dx
E:x(b+rq—xx), [S82]
dg

Whereas the total number of discrete invertase constituents is
ny ~R?q, the total number of invertase molecules is R%>sq. Let
6 be a measure of the number of invertase molecules, such that
0=o0q. The ODE:s in this more natural variable read

dx r

E—x<b+;0—u), [S84]
do

S =opr=50. [S85]

The decay rate § is independent of the number of molecules that
make up an invertase constituent Q, so we can take experimental
measurements of the invertase molecular decay rate as values for 6.
Meanwhile the molecular invertase production rate and reproduc-
tion rate due to invertase take on scaled forms of the parameters in
our original ODEs:

r
Tmol =
(o2

[S86]

Pmol = 0P [S87]

Whereas measurements of pno are obtainable in the literature
(Table S1), our estimation of rp, is complicated by the fact that
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it is an effective parameter. It must capture the increase in the
reproductive rate due to invertase, which in reality is coupled to
the reaction rate of invertase and sucrose into glucose, as well as
to the uptake rate of glucose by yeast and the energy conversion
to reproduction. We do, however, know the typical range of yeast
reproduction rates. Let us define Ay as the yeast reproduction
rate measured experimentally. In turn, let A.¢ be the effective per
capita reproduction rate of yeast in the model:

Aeff = b +rq. [S88]
The yeast reproduction rate clearly depends on the amount of
public good in the system, typically varying from

Aest =b (all nonproducers) to Aeg=>b (all producers).

oK
OK — DT
[S89]

In reality, the reproduction rate of yeast in a system without any
invertase is effectively zero; we have assumed some baseline birth
rate for convenience in the model, which could be physically inter-
preted as being associated with an exogenous glucose concentra-
tion in the system. We assume that this is typically low, such that b
is small, whereas the yeast approaches its maximum reproductive
rate when it consists entirely of producers.

The parameter « controls death due to crowding. For sim-
plicity this is the only form of death in the model. This choice
leads, perhaps unnaturally, to the nonproducers (who exist at
typically lower densities) having a much smaller death rate than
producers. For the parameters chosen, however, we obtain per
capita death rates on the order of 1 h for producers and 10 h for
nonproducers. The parameter R meanwhile measures the as-
sumed spatial interaction scale. It determines the typical number
of individuals on each patch. We can use this value to infer the
size of a patch. Denoting the diameter of a yeast cell as L. and
assuming that the hyperproducing cells in the stationary state can
be packed on a grid, the size of each patch, L,, can be approx-
imated by

L,=Lc\/N,, [S90]
=L.R\K,. [S91]

The parameters m and D are effective migration and diffusion
rates in our model. To map these physical parameters these must
be in turn scaled by the patch length. The public good diffusion
rate must also be scaled by &, which maps the discrete amount of
invertase constituents Q to the number of invertase molecules.
Denoting my, and Deyp the physical migration and public good
diffusion rate rates, it can be shown that (28)

Dexp=0L.D, ey =Lm. [S92]
The parameter choices that follow from these calculations are
summarized in Table S2.

When considering the parameter choices summarized in Table
S2, it is important to make a final point. Whereas both the ap-
proximations we have used, the system size expansion in S/
Obtaining the SDE System from the Microscopic Individual-Based
Model and the fast-variable elimination in SI Obtaining a One-
Dimensional Effective Public Good Model, rely formally on R?
being large and & being small (O(R™?) > &), in practical terms
the procedures are relatively robust to this restriction. Indeed,
throughout the body of the main text, R =4, whereas ¢ is varied
on the interval [0,0.1]. In fact, we find that the approximate
analytic expression we obtain for the invasion probabilities of the
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phenotypes, Eq. S28, describes the results obtained from simu-
lation well, up to e=R~2, as illustrated in Fig. S2.

In terms of the system size expansion, this robustness can in
part be explained by the fact that the typical population sizes (V,
N,, and N,) are proportional to R. For populations of fixed size
N, SDE:s for the system can be obtained by means of a Taylor
expansion of the master equation (for example, Eq. S2) as a
series in 1/N. A crucial feature of the system we are concerned
with here, however, is that population sizes may vary, and so this

technique is unavailable. Instead we conduct an expansion in the
interaction scale R, which is proportional to the mean population
size. Although R may not be a large number itself, increasing R
leads to an associated increase in population size (Table S2). In
turn, this leads to terms of higher order in the Taylor expansion
of the master equation becoming subdominant (47), justifying
the truncation that leads to Eq. S4. In contrast, the resilience of
the fast-variable elimination approximation to such large values
of & is surprising.

X(Z) (0)

X(l)

Fig. S1.

Illustration of the origin of stochastically induced drift along the CM. The gray dashed line shows the form of the deterministic CM, which intersects

the x axis at a higher value than the y axis (phenotype X has a higher carrying capacity due to the production of the public good). The orange ellipse illustrates the form
of the Gaussian noise centered on the point x(®) on the CM. Fluctuations in the population are equally likely to increase or decrease the frequency of the Y phenotype
to the points x("). Away from the CM, the deterministic pressure to the CM becomes prominent, forcing the system along quasi-deterministic trajectories back to the
CM, at the points x(2. The resulting distribution of x(2 does not have a mean centered on x(%. Rather, the distribution is shifted, inducing a drift in favor of the

producing X phenotype.
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Illustration of the larger range of values for the parameter & over which the approximation Eq. $28 is accurate. Parameters are given in Table S2, with

the exception of py and &, which are varied. Note that this figure is similar to Fig. 2, in the main text, but plotted over a greater range of ¢ and ¢, — ¢,. The

parameter region plotted in black is that for which &> rpy.

Constable et al. www.pnas.org/cgi/content/short/1603693113

9 of 11


www.pnas.org/cgi/content/short/1603693113

L T

/

1\

BN AS  PNAS D)

Fig. S3. (A-H) Eight different fitness rankings are possible based on the pairwise invasibility probabilities of nonproducers, producers, and hyperproducers. (A)
Producers have a larger invasion probability than both hyperproducers and nonproducers, while hyperproducers have a larger invasion probability than
nonproducers. (B) Producers have a larger invasion probability than both hyperproducers and nonproducers, while nonproducers have a larger invasion
probability than hyperproducers. (C) Hyperproducers have a larger invasion probability than both producers and nonproducers, while nonproducers have a
larger invasion probability than producers. (D) Hyperproducers have a larger invasion probability than both producers and nonproducers, while producers have
a larger invasion probability than producers. (E) Nonproducers have a larger invasion probability than both producers and hyperproducers, while hyperpro-
ducers have a larger invasion probability than producers. (F) Nonproducers have a larger invasion probability than both producers and hyperproducers, while
producers have a larger invasion probability than hyperproducers. (G) Producers have a larger invasion probability than hyperproducers. Hyperproducers have
a larger invasion probability than nonproducers. Nonproducers have a larger invasion probability than producers. (H) Producers have a larger invasion
probability than nonproducers. Nonproducers have a larger invasion probability than hyperproducers. Hyperproducers have a larger invasion probability than
producers. The nontransitive dynamics of G and H are not seen in the public good model.

Table S1. List of experimental parameters obtained from the literature

Experimental parameter Value Description

Prmol 0.46 mol -s" Production rate of a molecule of invertase per producing yeast cell (26)
S 2%x1073 mol-s! Estimated efficacy decay rate of invertase (ref. 49, figure 5)

Aexp 0.31-05h7" Yeast reproduction rate in producing population (50, 51)

Eexp 0.06 Cost of public good production to yeast reproduction rate (50)

Dexp 100 pm? -5’ Diffusion rate of invertase molecules estimated in ref. 41

Le 3um Cell length physical approximation (41)

Table S2. List of parameters used in the simulation, with the exception of p,, p,, & m, and D, which are varied

Parameter Value Justification

c 4,000 Assumed parameter. Presence of 4,000 invertase molecules required for yeast reproduction.

py 0 True nonproducer does not produce invertase.

Px 1.14x 1074 s7' (0.41 h‘1) Experimental value of molecular invertase production rate (Table S1) scaled by ¢ (Eq. S88).

Pu 1.2x10% 571 (0.43h™") Leads to factor 1.7 increase in the steady-state invertase from producing to hyperproducing
population, consistent with ref. 33.

b 6.94x1076 s (0.025 h™") Small baseline yeast birth rate assumed.

r 1.58% 1075 s~1 (0.057 h™") Chosen to give per capita yeast reproduction rate (b+rq) ~ dexp When system is entirely
producers (Table S1).

) 0.002 5! Taken from experimentally measured values (Table S1).

K 1x1076 s Suggested parameter for illustrating effects in this work; restricted by x> p;r, i=x,y, u.

R 2 Suggested parameter for illustrating effects in this work.

e 0.06 Taken from experiments (Table S1).

Ny 28 Eq. S20.

Ny 302 Eq. S20.

Ny 499 See Eq. S20 for N, and substitute p, for py.

Ly 67 pm Eq. S92.

m 3.4x1077 s Yields a migration to birth-rate ratio between m/b=4.9x 1072 (all nonproducers)
and m/(b+rq)=4.5x10-3 (all producers).

D 2.22%x107> 57! Obtained using experimental value Dey, from Table S1 and Eq. $93.
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Metapopulation dynamics
t = 253 days
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Movie $1. Simulation of the metapopulation public good model on a 100 x 100 grid (C = 10%). Colors indicate the number of producers on each patch; patches
with a small number of producers are colored red whereas patches with a large number of producers are colored blue. Parameters used are p,=1x 1074,
£=0.02, m=3.7x 1075 and the remaining parameters are taken from Table S2. With these parameters, N, ~28 and Ny~ 129. Initial conditions are a single
producer and nonproducer on each patch. Large numbers of producers on a patch are correlated with low numbers of nonproducers on the same patch. The
space-averaged dynamics of this simulation are given in the main text, Fig. 4. Counter to the deterministic prediction, the number of producers increases with
time, whereas the number of nonproducers decreases.

Movie S1

Metapopulation dynamics
t =253 days

Patch State
All Producers

Mix

All Non-producers

Movie S2. The distribution of homogeneous nonproducing patches (red), homogeneous producing patches (blue), and heterogeneous mixed patches (gray-
green) in the simulation of the metapopulation public good model given in Movie S1. For the majority of the observation time, every patch contains a
heterogeneous mix of producers and nonproducers. Homogeneous producer patches begin to emerge only as producers approach fixation in the system.

Movie S2
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