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In social systems ranging from ant colonies to human society, behavioural
specialization—consistent individual differences in behaviour—is common-
place: individuals can specialize in the tasks they perform (division of labour
(DOL)), the political behaviour they exhibit (political polarization) or the
non-task behaviours they exhibit (personalities). Across these contexts, be-
havioural specialization often co-occurs with modular and assortative
social networks, such that individuals tend to associate with others that
have the same behavioural specialization. This raises the question of whether
a common mechanism could drive co-emergent behavioural specialization
and social network structure across contexts. To investigate this question,
here we extend a model of self-organized DOL to account for social influence
and interaction bias among individuals—social dynamics that have been
shown to drive political polarization. We find that these same social
dynamics can also drive emergent DOL by forming a feedback loop that
reinforces behavioural differences between individuals, a feedback loop
that is impacted by group size. Moreover, this feedback loop also results
in modular and assortative social network structure, whereby individuals
associate strongly with those performing the same task. Our findings
suggest that DOL and political polarization—two social phenomena not
typically considered together—may actually share a common social mechan-
ism. This mechanism may result in social organization in many contexts
beyond task performance and political behaviour.

1. Introduction

Individuals within social systems differ in their behaviour. When these individual
behavioural differences become consistent over time, i.e. when inter-individual
behavioural variation exceeds intra-individual behavioural variation, the system
is said to exhibit behavioural specialization [1,2]. Under this broad definition,
behavioural specialization encompasses well-studied behavioural phenomena,
including division of labour (DOL), emergent ‘personalities” and political polar-
ization. DOL is defined as the specialization of individuals on different tasks—
i.e. behaviours necessary for group survival (e.g. foraging)—within the social
group. DOL is widespread in both human [3] and animal societies [4] and is
associated with beneficial outcomes, such as increased individual reproduction
and survival [5]. Personalities—sometimes called behavioural syndromes—are
defined as consistent individual differences in non-task behaviours [6-8], such
as aggressiveness, exploratory behaviour or cooperation. Diverse personalities
have been observed across social systems, from invertebrates [9,10] to birds [11]
to mammals [12,13] and, of course, humans. Opinion polarization—an occur-
rence in human societies—is defined as the adoption of extreme viewpoints by
individuals [14]. Opinion polarization can result in political polarization, i.e.
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specialization of political behaviour, whereby individuals con-
sistently vote for a subset of possible issue stances or political
parties. Thus, seemingly distinct behavioural phenomena that
are typically studied independently actually fall under
the much broader umbrella of behavioural specialization,
making it worthwhile to explore possible shared underlying
mechanisms for their emergence.

In addition to being widespread across social systems, be-
havioural specialization often co-occurs with modularity and
assortativity in the social network [11,15-21]: both human
and animal societies are frequently organized into social net-
works that show clustering and self-sorting according to
behavioural traits, including personality, task specialization
or political ideology. In the context of political polarization,
the social sciences have theoretically explored the role of
social interactions in explaining the co-emergence of behav-
ioural specialization and social network structure [22-25].
In these opinion dynamic models, individuals hold political
opinions that can gradually change by becoming similar to
the opinions of others with whom they interact. When indi-
viduals only interact with those that hold
opinions—a dynamic known as ‘bounded confidence'—
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polarization emerges, such that individuals adopt extreme
opinions and form ideologically uniform clusters in the
social network. While bounded confidence is specific to
opinion dynamic models, it is underpinned by two general
mechanisms—social influence and interaction bias—tied in a
feedback loop that reinforces behavioural differences in
social systems. Social influence refers to the change(s) in indi-
vidual behaviour in response to the behaviour of social
partners. Interaction bias captures individuals’ propensity
to interact more than by chance with others exhibiting certain
traits or behaviours (e.g. homophily [15]). Given that political
polarization is just a form of behavioural specialization—as
are DOL and personalities—it is worth investigating whether
a feedback between social influence and interaction bias may
underlie the co-emergence of behavioural specialization and
social network structure in other contexts and social systems.

Social influence and interaction bias appear to be wide-
spread in animal societies. An animal’s social network can
shape its behaviour [26-28], suggesting the existence of
social influence, whereby individuals change their behav-
ioural traits in response to the behaviour of others. A
compelling example comes from social spider groups,
where persistent social interactions lead to more varied and
consistent personalities over time [29,30], a phenomenon
that experiments suggest results from individuals adjusting
their personalities to be similar to those with whom they
interact [31]. Conversely, an animal’s behavioural specializ-
ation influences its social [11,21,32,33],
suggesting the existence of interaction bias, whereby individ-
uals interact more frequently with others exhibiting the same
behaviours (e.g. homophily [15]). Interaction bias can result
from various factors, such as preferential association among
[11,20] or spatial fidelity of [18,34] behavioural types. These
two simple mechanisms—social influence and interaction
bias—could form a feedback that reinforces behavioural
differences in social systems: individuals are more likely to
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interact with others who are similar, and, via the interaction,
their similarity, and therefore the likelihood of future inter-
actions, further increases. Despite the prevalence of these
two mechanisms, this possible feedback between them
remains underexplored theoretically.

A promising approach to explore this feedback is via the
response threshold framework, which has been broadly
employed to study collective, self-organized phenomena ran-
ging from DOL to behavioural cascades [25,35-37]. To make
specific inferences and predictions, here we focus on the
instantiation of this theoretical framework that deals with
DOL [5,36,38—40], but this approach is amenable to generaliz-
ation. DOL is a particularly suitable candidate for two
reasons. First, empirical evidence suggests that social inter-
actions can indeed influence task specialization [41-43], but
theoretical work so far has only explored social interactions
in the context of short-term task recruitment [44-46] or age-
based differences in task performance [47,48]. Second, DOL
can be employed to study scaling effects [5,38,39,49], i.e. the
influence of group size on emergent properties, an aspect
that has received less attention in the social science literature
despite sociological theory suggesting that group size greatly
influences human society [3]. How group size influences
social dynamics is especially relevant as the world becomes
more global and well connected.

Here we extend the response threshold framework to
account for social dynamics—specifically, social influence
and interaction bias. We explore both preferential interactions
with those who are similar (homophily) and preferential inter-
actions with those who are different (heterophily). We assume
interactions to be bidirectional, such that the two participants
have the same effect on each other. As a consequence of the
interaction, the two individuals may become more similar to
each other (henceforth, positive influence) or more different
(henceforth, negative influence). We, therefore, consider four
possible combinations of interaction bias and social influence:
homophily or heterophily with positive or negative influence.
Using this framework, we explore the emergence of DOL and
the co-emergent social network structure.

2. Model description

The response threshold framework relies on two basic
assumptions: (a) that there are stimuli signalling information
about the environment or the group; and (b) that each indi-
vidual has internal, stimulus-specific thresholds that
determine its behaviour—when a stimulus level exceeds an
individual’s corresponding threshold, the individual per-
forms the associated behaviour. In the context of DOL, the
stimuli are assumed to signal group needs, such as hunger
or the need for brood care, and thus the associated beha-
viours might include foraging or nursing. In the following
subsections, we first describe the most common implemen-
tation of response thresholds for the study of DOL—the
fixed response threshold model, which assumes that an indi-
vidual’s thresholds are fixed (i.e. they do not change over
time). Subsequently, we extend this model by relaxing the
fixed thresholds assumption to allow an individual's
thresholds to change over time due to social influence. We
call this the socially modulated threshold model.

2.1. Fixed response thresholds

First introduced in the social insect literature [36], fixed
response thresholds have been widely used to study self-
organized DOL. The dynamics of the model follow the
description above: individuals use fixed (i.e. a constant
value through time) internal thresholds to respond to stimuli

$95061L07 :LL bualuf 0S Y °f  yisi/feusnol/biobuiysijgndfiaposiesos H



signalling group needs. The model operates in discrete time
and assumes a social system with m tasks and # individuals.
Since each threshold corresponds to a specific stimulus, every
individual has m thresholds. An n by m binary matrix,
X; = [xj,], describes the behavioural state of each individual
i for task j at a given time step t. We assume individuals
can perform at most one task at a time. Therefore, if individ-
ual i is inactive, all x;; = 0; if it is active, exactly one x;;, = 1.

2.1.1. Stimuli
The model assumes that a given task stimulus is governed by
a simple dynamic: it increases when not enough individuals
perform the task, and it decreases when sufficiently many
individuals perform the task. Specifically, the stimulus for
task j at time ¢, s;,, satisfies:
n

Sjtr1 =5t + 6 — aL’j 2Ly
where &; is the constant, task-specific stimulus increase rate
per time step for task j (i.e. task demand rate), > ', x;i¢/n
is the fraction of the group performing task j at time t, and
a is the work efficiency of active individuals. This formulation
of the task stimuli dynamics allows task demand to scale
proportionally with group size [36].

2.1.2. Thresholds

Only inactive individuals assess stimuli; active individuals
cannot switch tasks without first becoming inactive. Every
time step, each inactive individual encounters each stimulus
in a random order, until it either begins to perform a task
and thereby becomes active, or it has encountered all stimuli
and thereby remains inactive. When inactive individual i
encounters a stimulus that exceeds its threshold for that
task (sj;>6;;,), it performs that task (x;,=1 and all other
xi;=0 where [#j). Otherwise, the individual remains
inactive for that task. Once an individual becomes active, it
continues to perform the task until it spontaneously quits
with constant probability 7 [36,38,39].

Because they are thought to have a biological basis in
physiological, genetic or epigenetic differences [50,51] and
might therefore have constraints, thresholds are bounded
and take values in the interval [0, 100]; however, for comple-
teness, we explore how changing/removing the upper bound
on the thresholds affects our results. We initialize all simu-
lations by drawing individual i’s threshold for task j from a
normal distribution with mean y; and normalized standard
deviation o; (measured in units of uj; e.g. 0;=0.1 indicates a
standard deviation that is 10% of the mean). If 0;=0, the
initial social group is homogeneous with respect to
thresholds; if o; is positive, then there exists inherent initial
variation among group members. For simplicity, we assume
that all tasks have the same ¢ and u.

2.2. Socially modulated thresholds

To account for social interactions—specifically, social influ-
ence and interaction bias—we extend the fixed thresholds
model to include inter-individual interactions that can alter
the threshold values of individuals, while keeping the stimuli
dynamics and the way thresholds determine individual be-
haviour unchanged. All individuals (both active and
inactive) can initiate and be engaged in interactions, but
only active individuals exhibit

social influence and

interaction bias. An n by n binary matrix A; = [a; ], describes
the interactions between individuals in a given time step t: if
individual i interacts with individual k, then a;;=1; other-
wise, ay ;= 0. For simplicity, we assume that interactions are
undirected, i.e. aj;=ai;,;. To mimic the ephemeral nature of
social interactions [52,53], we further assume that an interaction
lasts for only one time step.

2.2.1. Sodial interactions

Every time step, each individual initiates an interaction with
exactly one other individual in the group. Nevertheless, an
individual can have more than one interaction partner at a
time, provided that other individuals initiate interactions
with it. When an individual initiates an interaction, a partner
is selected from the group probabilistically, using a weighted
random sample [54] that represents the random mixing of
individuals in the group. The probability that individual i
selects individual k as interaction partner at time ¢ is:

Wik
7
D ki Wikt

where wj ; is the interaction weight between individuals 7 and
k. Thus, the probability that individual i initiates an inter-
action with individual k is proportional to interaction
weight ;. The interaction weights are determined by the
interaction bias.

Pr(ay, =1) =

2.2.2. Interaction bias

Inactive individuals exhibit no interaction bias (i.e. they are just
as likely to initiate an interaction with active and inactive indi-
viduals). Active individuals can exhibit interaction bias towards
other active individuals who perform the same task. When
individuals tend to positively bias their interactions towards
those performing the same behaviour, they are said to exhibit
homophily [15]; conversely, a positive bias towards those per-
forming different behaviours is called heterophily. To allow
for interaction bias, we let the interaction weights assigned to
potential partners depend on their behavioural state. If individ-
ual k is performing the same task as individual i at time ¢,
individual k is assigned interaction weight w; ;=8> 0; other-
wise, if individual k is inactive or performing a different task,
then it is assigned interaction weight w;;=1. If #> 1, then the
model captures homophily; if f<1, it captures heterophily.
Setting f=1 causes interactions to be entirely random, such
that groups are well mixed and the probability of individual
interacting with individual k is 1/(n — 1). Inactive individuals
have an equal chance of interacting with every behavioural
type (i.e. all w;;=1). The interaction bias could be driven by
preferential association between behavioural types, but also
by spatial factors alone. For example, the spatial segregation
of tasks may limit the individuals with whom an active individ-
ual can interact: when nursing larvae in a location, an
individual is more likely to bump into other nurses and less
likely to bump into foragers that are away from the nest search-
ing for food. Therefore, interaction bias $ could be thought of as
a spatially implicit term, depending on the system under study.

2.2.3. Social influence

Thresholds change as a result of social interactions with
active individuals. When two inactive individuals interact,
all their thresholds remain unchanged. Active individuals
influence the thresholds of those they interact with (both
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Table 1. Parameter settings for model. Unless stated otherwise, these are the default values used in all simulations.

parameters description values or range in simulation

T simulation length in time steps 50 000
0
S o
. ,u/:,u B taskspeqﬁcmean R RN fOrtaSkj e

taken to be the same for all tasks

. taskspeqﬁ( |n|t|a| thresho|dvanat|0n(bymode/type)l e,

0 (socially modulated),

taken to be the same for all tasks 0.05 (fixed)
. 6/= 5 R st|mulu5|ncreasefortask/ et e e e
o 'Wo'rk'vefﬁc'iveﬁ'cy'of'ac'ﬁv'ev T
o . probab|l|ty o qu|tt|ng e
e socil influence (by model type) +0.1 (socally modulated),
0 (fixed)
. ﬁ S 0 (homophlly) }

active and inactive). Specifically, when individual i interacts
with an active individual performing task j, individual i's
threshold for task j decreases by &, while its other thresholds
increase by the same amount. If £> 0, then this makes indi-
vidual i more likely to perform the same task as the
interaction partner in the future (positive influence); if € <0,
individual i is less likely to perform the same task (negative
influence). Because interactions are undirected, both interact-
ing individuals will change each other’s thresholds,
provided that both are actively performing tasks. Thus, the
modification of individual i’s thresholds is dependent on
the number of active individuals it interacts with and can
be described by:

Ot = O+ 8| > @exir— > diidye |,

ki1 k=i

where > aj Xy is the number of active interaction partners
performing tasks other than task j and AirsXxjp 1S the
number of active interaction partners performing task j. It is
important to note that when £=0, thresholds are fixed,
although social interactions still occur. Thus, setting £ =0 cap-
tures the fixed threshold model described in section 2.1, but
with the addition of social interactions (that do not influence
the emergent self-organization). This will allow us to both
compare the socially modulated results with the fixed
threshold model and explore the emergent social network
structure in the absence of social influence.

All parameters and their values can be found in table 1.

3. Results

For simplicity, we assumed that there are only two tasks, i.e.
m =2, that both tasks have the same demand rate §, and that
thresholds are drawn from the same distribution, with mean
1 and relative standard deviation o. To investigate emergent
DOL and the co-emergent social network structure in the
presence of social influence and interaction bias, we started
with a homogeneous population (i.e. c=0). Subsequently,

0.9 (heterophily)

to determine whether the co-emergent social network struc-
ture requires both social influence and interaction bias (as
opposed to interaction bias alone), we compared our results
to those of a model in which individuals still interacted in a
biased manner but had fixed thresholds (i.e. £ =0). For this
model, since thresholds are fixed, in order for DOL to
emerge and permit comparison, we started with a slightly
heterogeneous population (i.e. ¢ is small, but non-zero).

3.1. Emergent DOL

We found that homophily with positive influence—the com-
bination that is often implemented in opinion dynamic
models—could result in self-organized DOL (figure 1a).
Under these conditions, social influence and interaction bias
formed a positive feedback loop that caused thresholds to
polarize, such that individuals had one very low and one
very high threshold (figure 1b). Since one stimulus always
crossed a given individual’s low threshold and the other
stimulus never crossed its high threshold, individuals fully
specialized in one task. However, this feedback loop resulting
in DOL could not form when either interaction bias was
insufficient or social influence was absent. Analytical results
revealed that a minimum level of interaction bias f* must
be present in order for active individuals to have their behav-
iour reinforced by others performing the same task, and thus
for DOL to emerge. This outcome is due to the fact that an
active individual cannot interact with itself (electronic sup-
plementary material). Although the numbers of individuals
performing each task at a given time are similar (i.e. n; =
1), an individual performing task 1 has 1; — 1 potential inter-
action partners performing the same task and 1, potential
interaction partners performing the other task. Therefore,
the interaction bias 8 must be large enough to overcome the
deficit in potential interaction partners, i.e. f(n; —1)>n,.
When there are more than two tasks, there is an even larger
deficit in potential interaction partners, which requires even
higher g in order to achieve (high levels of) DOL (electronic
supplementary material, figure S2A). The order in which
inactive individuals encounter stimuli has no effect when
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Figure 1. The emergence of behavioural specialization under homophily with positive influence. Simulations and calculations assume group size n = 80. (a) The
effect of interaction bias 5 and social influence £ on the emergence of behavioural specialization. Colour represents the mean of 100 replicate simulations for each
parameter combination. The black line represents the analytical solution for the minimal level of interaction bias, 5*, needed for the emergence of DOL. (b) Example
simulation from the highlighted parameter combination in (a), showing the change in individuals’ task 1 thresholds over time and the cumulative distribution of
task 1 performance frequency. (c) The effect of threshold bounds on suppressing DOL at high levels of social influence . Points represent mean (+s.d.) of 100
replicates. (d) Example simulations from parameter values highlighted in grey in (c), showing the change in individuals’ task 1 threshold over time. (Online version

in colour.)

there are two tasks but can have an effect when there are
more than two tasks (electronic supplementary material,
figure S2B-D).

On the other hand, if the social influence was not present,
there was no mechanism by which the initially homogeneous
population could differentiate and, therefore, DOL could not
emerge. Interestingly, while the presence of positive influence
generally resulted in DOL, high levels of positive influence
could actually suppress DOL (figure 1a,c) by causing individ-
uals to become overly similar to one another (i.e. we observed
the emergence of conformity). This conformity may be due to
the fact that high social influence causes thresholds to change
at a faster rate than stimuli can regenerate. As a result, indi-
viduals become more influenced by each other’s behaviour
than by the demand for various tasks, even when there are
far more individuals performing one task than the other
(and therefore much less demand for the former task). This
eventually leads all individuals to perform the already
more-performed task. In the simulations, removing upper
limits on threshold values caused this conformity to occur
at higher levels of social influence compared to when there
are bounds on threshold values (figure 1c). This was due to
the fact that threshold bounds keep the two threshold
values of each individual close enough that, when there are
temporarily more individuals performing one task than the

other, if the social influence is sufficiently high, it takes only
a few interactions to decrease the threshold bias of individ-
uals specialized on the less-performed task and thereby
reduce behavioural specialization (figure 1d); however,
when thresholds are unbounded, the difference between an
individual’s two thresholds can grow so large that a tempor-
ary shift in threshold values is not enough to meaningfully
alter its behaviour, unless the social influence is very high.
To explore other social interaction types and their effect
on social organization, we simulated three additional combi-
nations of social influence and interaction bias—homophily
with negative influence; heterophily with positive influence; and
heterophily with negative influence (figure 2a). Each combi-
nation resulted in a unique pattern of emergent DOL, but a
general trend can be observed: interaction bias only affected
emergent DOL under conditions of homophily. Increasing
homophily in the presence of positive influence resulted in
a shift from homogeneous, non-specialized individual behav-
iour to highly specialized individual behaviour, while
increasing homophily in the presence of negative influence
resulted in the opposite trend, i.e. a shift from specialized
to non-specialized behaviour. On the contrary, under con-
ditions of heterophily, the level of interaction bias did not
affect the pattern of behavioural specialization: regardless of
the intensity of heterophily, DOL always emerged when
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Figure 2. Emergent behavioural specialization for different types of social interactions and as a function of group size. Colour represents the mean of 100 replicate
simulations for each parameter combination. (a) DOL in groups of size n = 80 under different combinations of social influence and interaction bias. Black line is the
analytical calculation for 5%, the minimal level of interaction bias at which active individuals are more likely to interact with others performing the same task. (b)
The effect of group size and interaction bias on DOL under either positive or negative influence. Black curve on plot is the analytical calculation of n*, the minimal
group size at which active individuals become more likely to interact with others performing the same task. Such a switch in interaction patterns with group size
only occurs with homophily; with heterophily, active individuals are always more likely to interact with individuals performing the other task. (Online version

in colour.)

heterophily was combined with negative influence, whereas
DOL never emerged—and groups remained behaviourally
homogeneous—when heterophily was combined with posi-
tive influence. Lastly, high levels of social influence still
decreased DOL, except under heterophily with positive influ-
ence, where groups were always homogeneous in behaviour.

Group size influenced DOL, but only under homophily.
Homophily with positive influence caused DOL to increase
with group size, while homophily with negative influence
caused DOL to decrease with group size (figure 2b; electronic
supplementary material, figure S3). Under heterophily, how-
ever, group size did not affect DOL: heterophily with positive
influence resulted in homogeneous, non-specialized behav-
iour at every group size, while heterophily with negative
influence resulted in fully specialized behaviour at every
group size. Analytical results showed that, under our
assumptions, scaling effects could never occur with hetero-
phily because an active individual is always more likely to
interact with individuals performing the other task, regard-
less of the group size (electronic supplementary material).
Under homophily, however, there are groups large enough
so that an active individual is more likely to interact with
those performing the same task. For a given interaction bias
B>1, there is a minimal group size n*=af/6(F—1) that
allows the interaction bias to overcome the deficit in potential
interaction partners (electronic supplementary material). For
groups of size larger than #*, increasing group size enhanced
the effect of interaction bias S, such that individuals increas-
ingly interacted with those performing the same task. The
higher frequency of interaction among similar individuals
caused thresholds to change at a faster rate and eventually
polarize, such that all individuals” thresholds became maxi-
mally biased towards one task or the other (electronic
supplementary material, figure S4). Thus, the feedback
between social influence and interaction bias was amplified
in larger groups, which, in turn, caused DOL to emerge

faster over the course of a simulation. Moreover, the level of
interaction bias f* needed for DOL to emerge decreased as
group size increased (electronic supplementary material,
figure S5).

Although, for computational convenience, we ran simu-
lations on short-to-intermediate timescales, longer simulations
revealed that the results do not qualitatively change between
shorter and longer timescales (electronic supplementary
material, figure S6) and analytical calculations produced
further confirmation (electronic supplementary material).

3.2. Co-emergent social network structure

Since homophily with positive influence offered the most
interesting case for emergent DOL that scales positively
with group size, we focused the remainder of our analysis
on this subset of social interactions. At a given group size,
for combinations of social influence and interaction bias
that allowed the emergence of DOL, the co-emergent social
network was fully connected, but the frequency of inter-
actions between individuals showed an assortative,
modular pattern. The modularity and assortativity of the net-
work increased with the interaction bias S, i.e. the social
network structure increasingly deviated from random
(figure 3a). On the other hand, the social influence, &, did
not generally affect the social network structure, except at
high levels of positive influence, where modularity and assor-
tativity decreased and eventually disappeared (figure 3b). In
instances where both social influence and interaction bias
were present and DOL emerged, the most frequent inter-
actions occurred within clusters of individuals with similar
threshold biases (figure 3c,d). The frequency of interactions
within these clusters was significantly higher than random
(see Material and methods for explanation of statistical test),
while the frequency of interactions between individuals in

different clusters was significantly lower than random. As
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with DOL, group size also influenced social network struc-
ture (figure 3e). As groups increased in size, both
modularity and assortativity rapidly emerged over a
narrow range of group sizes coinciding with the emergence
of DOL (figure 3f).

3.3. Social influence is necessary for modularity to
emerge

Finally, we investigated whether the observed social network
structure was the result of both social influence and inter-
action bias or was simply the result of interaction bias
alone. To this end, we compared our results to the output
of a model in which individuals still interacted in a biased
manner but had fixed thresholds (i.e. £=0). In our socially
modulated threshold model, threshold variation is generated
over time due to social influence, even in initially homo-
geneous groups; however, in response to threshold models,
DOL will emerge only if there is initial variation in thresholds
among individuals. Therefore, to allow comparison, we ran
fixed threshold simulations with initial threshold variation
0 =0.05, which was sufficient to reach high DOL (figure 44;
electronic supplementary material, figure S7).

When we removed the effects of social influence on
thresholds using the fixed threshold model, we found that
interaction bias alone resulted in different social network pat-
terns. First, while both fixed and socially modulated
thresholds resulted in increasing assortativity with group

size, the increase in assortativity was larger and eventually
positive with socially modulated thresholds (figure 4b),
whereas, with fixed thresholds, assortativity plateaued at
approximately random mixing among individuals. Second,
socially modulated thresholds resulted in increasingly modu-
lar social networks with group size, while fixed thresholds
resulted in consistently non-modular social networks
(figure 4c). Finally, as groups increased in size, socially
modulated thresholds resulted in more non-random inter-
actions (material and methods); on the contrary, fixed
thresholds resulted in fewer non-random interactions as
groups increased in size (figure 4d). Examining individual-
level behaviour revealed that these contrasting patterns of
social network structure were due to task generalists (elec-
tronic supplementary material, figure S8). Because fixed
thresholds do not change and therefore remain in their initial
normal distribution, a sizeable number of individuals have
thresholds from the middle of this distribution and are there-
fore equally likely to do either task. As such, these
‘generalists’ interact frequently with both types of task
specialists, thereby bridging the social network and prevent-
ing the establishment of modularity. As groups grew larger,
the number of generalists increased, which in turn increased
the frequency of random interactions in the social network.
By contrast, socially modulated thresholds caused individ-
uals to have strongly biased thresholds at larger group
sizes, thereby removing any initial generalists from the
group. Taken together, these results demonstrate that both
social influence and interaction bias are necessary to produce
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the scaling effects in social network structure that were
observed in the simulations.

4. Discussion

Our main result demonstrates that, in the presence of homo-
phily with positive influence, the feedback between social
influence and interaction bias could result in the co-emergence
of DOL and modular social network structure. These results
reveal that self-organized specialization could give rise to
modular social networks without direct selection for modular-
ity, filling a gap in our knowledge of social organization [55]
and mirroring findings in gene regulatory networks, which
can become modular as genes specialize [56]. The co-emer-
gence requires both social influence and interaction bias but,
if the level of social influence is too high, its pressure leads
to conformity, which homogenizes the society. Because this
feedback between social influence and interaction bias has
also been shown to drive political polarization [22-25], our
results suggest a shared mechanism between two social
phenomena—polarization and DOL—that have not tradition-
ally been considered together and raise the possibility that this
mechanism may structure social systems in other contexts as
well, such as in the case of emergent personalities [11,29-
31]. Furthermore, the ubiquity of this mechanism may help
explain why social systems often have a common feature—
modular network structure—that is shared with a range of
other biological and physical complex systems [57].
Intriguingly, although our results suggest that diverse
forms of behavioural specialization—and the associated
modular, assortative social networks—might arise from a
common mechanism, depending on their manifestation,
they can be either beneficial or detrimental for the group.
For example, DOL and personality differences have long
been associated with beneficial group outcomes in both
animal [5,58-60] and human societies [61] (although it can
sometimes come at the expense of group flexibility [62]).
Moreover, the modularity that co-occurs in these systems is
also often framed as beneficial, since it can limit the spread
of disease [63] and make the social system more robust to per-
turbation [55]. On the contrary, political polarization is
typically deemed harmful to democratic societies [64].
Thus, an interesting question for future research arises: if a
common mechanism underlies the emergence of behavioural
specialization and the co-emergence of a modular social net-
work structure in multiple contexts, why would group
outcomes differ so dramatically? Insights may come from
studying the frequency of co-occurrence among various

forms of behavioural specialization. If the same mechanism
underlies behavioural specialization broadly, then one
would expect multiple types of behavioural specialization
(e.g. in task performance, personality, decision-making) to
simultaneously arise and co-occur in the same group or
society, as is the case in some social systems, where certain
personalities consistently specialize on particular tasks
[9,10] or in human society, where personality type and politi-
cal ideology appear correlated [65]. Then, the true outcome
of behavioural specialization for the group is the net across
the different types co-originating from the same mechanism
and cannot be inferred by investigating any one specific
instantiation of behavioural specialization.

While DOL emerged when homophily was combined
with positive influence, other combinations of social influence
and interaction bias may nevertheless be employed in
societies to elicit other group-level phenomena. For instance,
under certain conditions, a society might benefit from uniform
rather than divergent, specialized behaviour. This is the case
when social insect colonies must relocate to a new nest, a col-
lective decision that requires consensus-building [66]. To
produce consensus, interactions should cause individuals to
weaken their commitment to an option until a large majority
agrees on one location. Heterophily with positive influence—
preferential interactions between dissimilar individuals that
reduce dissimilarity—achieves this dynamic and is consistent
with the cross-inhibitory interactions observed in nest-search-
ing honeybee swarms [67]: scouts interact with scouts
favouring other sites and release a signal that causes them
to stop reporting that site to others. One could imagine that
similar dynamics might also reduce political polarization.

Recent work has shown that built environments—phys-
ical or digital—can greatly influence collective behaviour
[16,18,68-70], but the mechanisms underlying this influence
have remained elusive. By demonstrating the critical role of
interaction bias for behavioural outcomes, our results provide
a candidate mechanism: structures can enhance interaction
bias among individuals and thereby amplify the behavioural
specialization of individuals. For example, nest architecture
in social insect colonies alter collective behaviour [68] and
social organization [18] possibly because the nest chambers
and tunnels force proximity to individuals performing the
same behaviour and limit interactions with individuals per-
forming other behaviours. Similarly, the Internet and social
media platforms have changed the way individuals interact
according to interest or ideology [16,69,70]: selective exposure
to certain individuals or viewpoints creates a form of
interaction bias that our results predict would increase
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behavioural specialization, i.e. political bias. Thus, our model
predicts that built environments should increase behavioural
specialization beyond what would be expected in more
‘open’, well-mixed environments. This prediction has evol-
utionary consequences: a nest can increase behavioural
specialization without any underlying genetic or otherwise
inherent, diversity. Such consequences would further conso-
lidate the importance of built environments—specifically,
nests—for the evolution of complex societies. It has been pre-
viously argued that the construction of a nest may have been
a critical step in the evolution of stable, highly cooperative
social groups [71]. Subsequent spatial structuring of the
nest would then, according to our findings, bring further
benefits to nascent social groups in the form of increased be-
havioural specialization, e.g. DOL, even in the absence of
initial behavioural and/or trait heterogeneity.

Finally, our results shed light on how plastic traits can
result in scaling effects of social organization with group
size, a finding that tightens theoretical links between the bio-
logical and social sciences. Founding sociological theorist,
Emile Durkheim, posited that the size of a society would
shape its fundamental organization [3]: small societies
would have relatively homogeneous behaviour among indi-
viduals, but DOL would naturally emerge as societies grew
in size and individuals differentiated in behaviour due to
social interactions. Similar to Durkheim’s theoretical framing,
John Bonner famously posited that complexity, as measured
by the differentiated types of individuals (in societies) or
cells (in multicellular aggregations), would increase as
groups grew in size [72]. Bonner argued that the differentiation
among individuals was not due to direct genetic determinism
but was instead the result of plasticity that allowed individuals
to differ as groups increased in size. Our model supports these
qualitative predictions and even predicts a rapid transition in
organization as a function of group size that results from
socially influenced plasticity at the level of the individual. Pre-
vious theoretical work showed that DOL could exhibit group
size scaling effects even with fixed traits, but these increases in
DOL quickly plateaued past relatively small group sizes [5,39].
Our model, along with models of self-reinforced traits [38],
demonstrates how DOL could continue to increase at larger
group sizes, a pattern observed empirically in both animal
[49,73] and human societies [74,75]. For other forms of behav-
ioural specialization, such as emergent personalities or
political polarization, the effect of group size is understudied;
however, our results suggest similar patterns. Our model
further demonstrated that group size can affect social network
structure, a dynamic that has only been preliminarily investi-
gated empirically so far [76]. Leveraging new technologies—
such as camera-tracking algorithms and social media—that
can simultaneously monitor thousands of individuals and
their interactions to investigate the effect of group size on
societal dynamics could have significant implications as globa-
lization, urbanization and technology increase the size of our
social groups and the frequency of our interactions.

5. Material and methods
5.1. Simulation details

We implemented our computational model as an agent-based
model and ran 100 replicate simulations per parameter combi-
nation. Each simulation lasted T=50 000 time steps.

5.2. Measuring behavioural specialization and DOL
DOL is measured with an information theory metric that is
common in social insect research [1]. At the end of a simulation
(t=T), a behavioural matrix is constructed with individuals as
rows and tasks as columns, i.e. X = [x;]. Each entry x; = ZLI Xij ¢
describes the amount of time that individual i spent performing
task j over the course of the simulation. Using this matrix, we
then calculated the Djngiy metric, which measures the degree to
which individuals specialize on a single task. Diqiv takes
values Dingiv €10, 1], such that 0 signifies homogeneous
behaviour and 1 signifies complete DOL.

5.3. Analysing social network structure

We construct social networks by aggregating all interactions over
the course of the simulation (electronic supplementary material,
figure S1A), a common approach for time-ordered networks
[52,53]. Thus, each simulation yields an interaction matrix
A=lay], whose entries represent the interaction frequency
between individuals i and k over the course of the simulation,
ie. Aj = ZL] aik/,/T.

We analysed the network structure by sorting the interaction
matrix according to threshold bias, calculated using each individ-
ual #’s final threshold values: 6; ;-1 — 65 -1~ This value quantifies
an individual’s final internal bias towards one task or the other
and takes values in the range [-100, 100], whereby —100 and
100 signify maximum bias towards task 1 and task 2, respectively.
Individuals within a group were then ranked according to
threshold bias, such that the individual most biased towards
task 1 was assigned rank 1 and the individual most biased
towards task 2 was assigned rank n (electronic supplementary
material, figure S1B). This ranking and sorting was done for all
simulations of a given group size. To then calculate an average
social network describing the typical interaction patterns within
a group of a given size, we averaged over all sorted interaction
matrices for that group size (electronic supplementary material,
figure S1C). The resulting average interaction matrix describes
interactions among individuals in relative terms—e.g. on average
how did the individual most biased towards task 1 interact with
others in the group. In our figures throughout, matrices are the
average of 100 replicate simulations of a given parameter combi-
nation, while networks are an example from a single simulation.

Modularity is a form of community structure within a group
in which there are clusters of strongly connected nodes that are
weakly connected to nodes in other clusters. Using each simu-
lation’s time-aggregated interaction matrix A, we calculated
modularity with the metric developed by Clauset et al. [77]. A
modularity value of 0 indicates that the network is a random
graph and, therefore, lacks modularity; positive values indicate
deviations from randomness and the presence of some degree
of modularity in the network.

Frequency of non-random interactions reveals the degree to
which individuals are biasing their interactions towards or
away from certain other individuals. For a random, well-mixed
population, the expected frequency of interactions between any
two individuals is pinteracc=1—-(1—-1/(n — 1))2. For our resulting
social networks, we compared this expected well-mixed frequency
to the value of each entry a; in the average interaction matrix result-
ing from the 100 replicate simulations per group size. To determine
whether the deviation from random was statistically significant, we
calculated the 95% confidence interval for the value of each entry
aj in the average interaction matrix. If the 95% confidence
interval for a given interaction did not cross the value pinteracts
that interaction was considered significantly different than random.

Assortativity is the tendency of nodes to attach to other nodes
that are similar in some trait (e.g. here, threshold bias). We
measured assortativity using the weighted assortment coefficient
[78]. This metric takes values in the range [— 1, 1], with positive
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values indicating a tendency to interact with individuals that are
similar in traits and negative values indicating a tendency to
interact with individuals that are different. A value of 0 means

random traits-based mixing among individuals.

Data accessibility. All code used to simulate the model and analyse
model outputs, as well as copies of the simulation data shown in
this paper, can be found on GitHub at https://github.com/christo-

kita/socially-modulated-threshold-model.
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