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a b s t r a c t

Social, biological and economic networks grow and decline with occasional fragmentation and re-
formation, often explained in terms of external perturbations. We show that these phenomena can be a
direct consequence of simple imitation and internal conflicts between ‘cooperators’ and ‘defectors’. We
employ a game-theoretic model of dynamic network formation where successful individuals are more
likely to be imitated by newcomers who adopt their strategies and copy their social network. We find
that, despite using the same mechanism, cooperators promote well-connected highly prosperous
networks and defectors cause the network to fragment and lose its prosperity; defectors are unable to
maintain the highly connected networks they invade. Once the network is fragmented it can be
reconstructed by a new invasion of cooperators, leading to the cycle of formation and fragmentation
seen, for example, in bacterial communities and socio-economic networks. In this endless struggle
between cooperators and defectors we observe that cooperation leads to prosperity, but prosperity is
associated with instability. Cooperation is prosperous when the network has frequent formation and
fragmentation.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Networks interpreted as graphs, consisting of nodes linked by
edges (Erd +os and Rényi, 1960), are used to model a wide variety of
natural and artificial systems (Barabasi and Albert, 1999; Boccaletti
et al., 2006; Csermely, 2009; Dorogovtsev and Mendes, 2003;
Jackson, 2008; Montoya et al., 2006; Newman et al., 2001; Watts
and Strogatz, 1998). The evolution and formation of complex
networks has been widely investigated (Boccaletti et al., 2006;
Dorogovtsev and Mendes, 2003), often with the goal of under-
standing how certain topologies arise as the result of copying
interactions (Davidsen et al., 2002; Jackson and Rogers, 2007;
Kleinberg et al., 1999; Krapivsky and Redner, 2005; Kumar et al.,
2000; Rozenberg, 1997; Sole et al., 2002; Vazquez et al., 2003).
Indeed, imitation is ubiquitous and is often crucial in systems
where global knowledge is not feasible (Bandura, 1985). This
mechanism can be conceptually divided into two components:
the imitation of behaviours (strategies) and the imitation of social
networks (connections). For instance, in networks where links

denote interpersonal ties, newcomers want to establish links to
successful people, imitate their behaviour and connect to their
friends (Jackson, 2008; Jackson and Rogers, 2007); in financial
networks (Bonabeau, 2004; Schweitzer et al., 2009) the links are
business relationships where newly created institutions emulate
the successful strategies of other institutions and try to do business
with the same partners (Haldane, 2009b). At a completely different
scale, in bacterial communities and multicellular systems, where
the links denote physical connections, a successful cell duplicates
and its offspring inherit (imitate) the strategies (genomes) and the
connections of its parents. Several studies have shown the general
relevance of imitation to the outcome of social dilemmas in well-
mixed and structured populations (Hofbauer and Sigmund, 1988;
Lieberman et al., 2005; Nowak, 2006b; Nowak and Sigmund, 2004;
Ohtsuki et al., 2006; Pacheco et al., 2006; Szabó and Fáth, 2007)
and to the dynamics of complex systems and networks (Akerlof
and Shiller, 2009; Bonabeau, 2004; Castellano et al., 2009; Haldane,
2009b; Helbing, 2010; Sornette, 2003), but it is an open challenge
to understand the role of imitation in the interplay between
individual benefits and the overall prosperity and stability of a
system (Bascompte, 2009; Haldane, 2009b; Haldane and May,
2011; Jackson, 2008; Schweitzer et al., 2009).

To address this challenge we employ a game theoretical model
of dynamic networks where nodes can be cooperators or defec-
tors and newcomers imitate the behaviour (strategies) and the
social network (connections) of successful role-models. We show
that the recurrent collapses and re-formations that characterize
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certain natural and manmade systems, often investigated in
terms of external perturbations (Albert et al., 2000; Billio et al.,
2010; Haldane, 2009b; Montoya et al., 2006; Paperin et al., 2011;
Scheffer et al., 2009), can be explained in our model as the
consequence of imitation and endogenous conflicts between
cooperators and defectors.

Cooperation leads to prosperity, but we observe that prosper-
ity is associated with increased connectivity, which in turn makes
the network vulnerable to invasion by defectors and network
collapse. Thus, the long-term prosperity and stability of the
system are negatively correlated and we find that cooperation is
most productive when the system is unstable.

2. Methods

2.1. Model

We consider a network of N nodes linked by a number of edges
which varies over the course of the evolution of the system. Each
node in the network adopts one of the two strategies of the
Prisoner’s Dilemma (Hofbauer and Sigmund, 1988; Nowak, 2006a;
Nowak and Sigmund, 2004): a cooperator pays a cost c to provide a
benefit b to all of its neighbours; defectors pay no cost and
distribute no benefit. At each step and for each node i, Payoffi is
calculated as the sum of pair-wise interactions with its neigh-
bours.4 A new node (a newcomer) is then added and a randomly
chosen existing node is removed from the system.

A node is selected probabilistically from the population to act
as role-model for the newcomer. The probability of a node i to be
selected as a role-model is proportional to its effective payoff
EPi ¼ ð1þdÞ

Payoff
i , where dZ0 specifies a tunable intensity of

selection (the exponential function affords the model greater
flexibility without losing generality, Aviles, 1999; Traulsen et al.,
2008). A newcomer copies its role-model’s strategy with prob-
ability 1%u or mutates to the alternative strategy with prob-
ability u. The newcomer is then embedded into the network: it
establishes a connection with each of the role-model’s neighbours
(‘copies’ its connections) with probability q and directly with the
role-model with probability p. Thus, with probability qk a new-
comer connects to all k neighbours of the role-model. Hence, the
parameter u controls the chance to imitate the strategy of a role-
model, while the parameters p and q explicitly model the ability
to imitate the role-model’s social network and are referred to as
embedding parameters because they control how the newcomer is
embedded in the network. Notice that the number of nodes is
maintained constant during the evolutionary process. In this
respect, our model works along the lines of a Moran process,
which describes the evolution of finite resource-limited popula-
tions and allow some analytical simplicity (Moran, 1962; Nowak,
2006a). A diagrammatic description of the model is given in Fig. 1.

2.2. Simulations

Computer simulations and visualizations were performed using
custom created software tools written in Java.5 Simulation runs start
from a randomly connected network of N nodes6 having average
connectivity k¼4 and proceed with a sequence of 108 steps, as

described in Section 2.1. All nodes initially adopt the same strategy
and long term statistics are calculated by taking the average of two
runs, one starting with all cooperators, the other with all defectors,
excluding the first 106 steps. At each step the total effective payoff of
a network is calculated as EPtot ¼

P
iA f1...NgEPi. The probability to

choose a node as role model is then EPi=EPtot . Hence, d¼ 0 produces a
uniformly random choice of node, independent of payoff, while
increasing d makes it more likely to choose nodes with higher
payoffs. We define prosperity as 100 & ð

P
iA f1...NgPayoff iÞ=ðN & ðN%1Þ&

ðb%cÞÞ, i.e., the total payoff of the network as a percentage of the total
payoff of a fully connected network of cooperators.

Long term cooperation, connectivity, largest component and
prosperity are calculated as the sum of the number of coopera-
tors, average node degree, number of nodes in the largest
component and prosperity at each step, respectively, divided by
the total number of steps considered.

3. Results

When mutation is rare, we observe transitions between the
extreme states consisting of all cooperators and all defectors
(Fig. 2). Such transitions are typically associated with changes of
network topology. When defectors take over, the network disin-
tegrates, while the dominance of cooperators is associated with
more connected networks. The network tends to contain a large,
well-connected component as long as cooperators are prevalent,
while the network becomes fragmented into many smaller
components when defectors prevail. During a transition from

Fig. 1. Network update mechanism. Newcomers imitate the strategy and social
network (connections) of successful role-models: (i) A role-model is selected
based on its effective payoff. (ii) The newcomer connects to the role-model with
probability p (dashed line), connects to each of its neighbours with probability q
(dotted lines) and emulates its strategy with probability u. (iii) A randomly
selected node and all its connections is removed from the network.

4 E.g., if a cooperator node has C cooperator neighbours and D defector
neighbours, its Payoff is C(b%c)%Dc. A defector node in the same neighbourhood
has Payoff¼Cb.

5 An online companion software tool that reproduces our results can be found
at http://www.dynamicalnetworks.org.

6 Random networks are generated by making any particular link with
probability k/(N%1).
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cooperation to defection, the network fragments only after
defectors have taken over (Fig. 3A). For a transition in the
opposite direction, the construction of the network is synchro-
nous with the rise of cooperators (Fig. 3B). We also note that the
delay between the spreading of defectors and the network
fragmentation is an increasing function of the embedding para-
meters, while the time for the network to rebuild is a decreasing
function of those parameters (Fig. 3). These phenomena are
robust for a wide range of parameters and initial conditions, as
well as when newcomers are drawn from the existing population
and ‘remember’ some of their previous connections (see Electro-
nic Supplementary Information). Thus, despite the fact that
cooperators and defectors are embedded and removed in an
identical way, we observe that cooperators promote the forma-
tion of well-connected networks and defectors cause the network
to fragment.

The way newcomers are embedded into the network influ-
ences the topology of the network, which in turn affects the
ability of cooperators to resist invasion by defectors and to
reconstruct the network once it has been destroyed.

In Fig. 4 we show how long term cooperation, network
structure (long term connectivity and largest component), net-
work stability (number of observed transitions) and long term
prosperity depend on the embedding parameters, p and q, as well
as on the benefit to cost ratio, b=c. We observe that the probability
p to connect to the role model seems less influential as long as it is
above a minimum value close to zero. In contrast, the probability
q to connect to the role model’s neighbours is crucial for
determining the evolution of cooperation, the network structure,
stability and prosperity.

The ability for a node to attract newcomers depends on its
connectivity but also on its strategy and the strategies of its
neighbours. This underlines the co-evolutionary interplay
between the spreading of cooperators and network dynamics
that leads to a complex trade-off between network stability and
long term prosperity. This is illustrated in Fig. 5 for the particular
numerical example b=c¼ 3, p¼0.6 and varying q. With a popula-
tion of predominantly cooperators, long term connectivity and
largest component size increase with increasing q up to peaks
where the long term cooperation is close to 100%. Further
increasing q allows defectors to invade, leading to a rapid decline
in the long term connectivity and size of the largest component.
For q close to 1, even defectors form well-connected networks,
but with low prosperity. In Fig. 6 we illustrate the topology of
networks for a variety of parameters and states of the system.
With q¼0.3 the network structure (degree and component size
distributions) of populations of all-cooperators, all-defectors and
mixed states are all similar; there is very low connectivity in all
cases. However, for q¼0.75 and q¼0.9, all-cooperator popula-
tions have a much higher connectivity than all-defector popula-
tions. There are also interesting differences for mixed populations.
For transitions from all-cooperators to all-defectors, we observe
that defectors invade a dense network of cooperators. For transi-
tions in the opposite direction, cooperators are seen to form
independent clusters with no connections to defectors. For q¼0.6
the population of cooperators exists in multiple isolated compo-
nents, making it difficult for defectors to spread. Here the
frequency of transitions is two orders of magnitude lower than
for q¼0.3 and q¼0.75. Thus cooperation is stable, but at the price
of low connectivity and low prosperity.

Fig. 2. Typical simulation run that favours cooperators but features transient invasions of defectors. A network of N¼100 nodes is simulated with parameters b/c¼3,
p¼0.6, q¼0.85, u¼0.0001 and d¼ 0:01. (A) Fluctuating abundance of cooperators. (B) Transition from all-cooperators to all-defectors accompanied by network
fragmentation. (C) Transition from all-defectors to all-cooperators showing the synchronous rise in the size of the largest component. (D–H) Graphical depiction of
networks during the transitions of (B) and (C): (D) a highly connected network of cooperators (blue); (E) defectors (red) invade the network, causing a reduction in
connectivity; (F) few cooperators remain and the network is becoming sparsely connected; (G) with only defectors present the network disintegrates; (H) a single
component of cooperators start to reconstruct the network. The end result of this construction process is a network which resembles that of (D). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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The recurrent formation and fragmentation shown in Fig. 2 can
be seen as the result of a conflict between the process of forming
clusters and random deletion. Since at each step the node to be

removed is chosen uniformly from the population (i.e., not
considering the payoff), the expected connectivity of the removed
node is equal to the instantaneous average connectivity of the

Fig. 3. Analysis of transitions at various embedding parameters. Median number of cooperators and size of largest component (dark lines) over time, considering all the transitions
observed in individual runs with various combinations of embedding parameters. Other parameters as in Fig. 2. The shaded regions represent the 10% (lower bound) and 90% (upper
bound) quantiles for the corresponding medians. Consult the Electronic Supplementary Information for the results on the complete range of the embedding parameters.

Fig. 4. Effects of embedding parameters and benefit to cost ratio. Long term cooperators, largest network component, connectivity, prosperity and number of transitions in
relation to embedding parameters, for various benefit to cost (b/c) ratios. When b/c¼1 long term prosperity is always zero. The black stars in the b/c¼3 column denote the
p, q combination used in Fig. 2. Other parameters as in Fig. 2.
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network. As a consequence, the change in the long term con-
nectivity is governed by the rate of the growth process relative to
the instantaneous average connectivity of the network. Thus, for
network connectivity to increase it is sufficient for newcomers to
have higher connectivity than the instantaneous average and not
necessary for them to have higher connectivity than the role-
model or for the role-model to increase its connectivity. When, by
virtue of the strategy mutation rate u, a cooperator invades a
network of all-defectors, its payoff will be the (equal) lowest in
the network and specifically lower than any defectors it is
connected to. If by chance the cooperator is chosen as role-model,
the newcomer will most likely be a cooperator and, assuming
sufficiently large p, they will connect and form a pair with higher
payoff. Any defectors connected to the cooperators will have
higher payoff and this explains why in Fig. 3B we see that
invasions by cooperators proceed slowly at first. If the pair of
cooperators survive and attract new cooperators, their payoff will
eventually be disproportionately greater than the remaining
defectors. This then initiates a (probabilistic) positive feedback
cycle which causes the synchronous growth of cooperators and
connectivity seen in the figures. For p and q not both equal to
1 there is always a non-zero probability that the network will be
entirely fragmented (isolated nodes). Thus, for the long term
average number of cooperators to be higher than that of defectors,
p must be greater than 0 to allow the initial pair of cooperators to
form and so have higher payoff than defectors. When, conversely,
a defector invades a network of cooperators, it will receive a
higher payoff than a cooperator with the same social network and
will simultaneously diminish the payoffs of its role-model and its
role-model’s neighbours. It therefore becomes increasingly likely
that a defector will be chosen as a role-model in subsequent
steps. The onset of an invasion by defectors is thus rapid, as can
be seen in Fig. 3. In the initial phase of the invasion cooperators
are not rare, however the relatively fewer defectors will be

Fig. 5. Trade-off between network stability and prosperity. Dependence on q of
the long term cooperation, connectivity, largest component, prosperity
and number of transitions for p¼0.6. Other parameters as Fig. 2. (A) Long term
cooperators, prosperity and number of transitions seen in 2'108 simulation
steps. (B) Long term connectivity and largest component plotted against
q (solid lines). Shaded areas denote the ranges of connectivity (yellow) and
largest component (grey) between all-cooperators (upper boundary) and
all-defectors (lower boundary). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Network topology related to q. Typical networks with all-cooperators (top row), all-defectors (bottom row) and the intermediate networks observed during
transitions in both directions (middle rows) for qAf0:3,0:6,0:75,0:9g. Other parameters as in Fig. 2.
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disproportionately likely to be chosen as role-models because of
their higher payoff. This is illustrated in Fig. S15, where it can be
seen that during typical transitions from all-cooperator to all-
defector networks with q¼0.75 and q¼0.9, defectors have com-
parable or higher average effective payoff than cooperators.
During this period the number of defectors increases, but the
growth of the connectivity is still affected by the current network
connectivity and by the number of cooperators. This explains why
there is a delay before the typical collapse in connectivity
associated with defectors and why the length of the delay is
correlated with p and q. As the relative number of cooperators
thus declines, so too the payoff of the defectors, but now defectors
are chosen as role-models by weight of numbers. With zero
payoff, the average network connectivity in all-defector networks
is at its minimum because the selection of role-models is
independent of connectivity.

In the Appendix we provide an analytic theory for the limit of
weak selection. We find that the critical benefit-to-cost ratio,
beyond which cooperators are favoured over defectors, does not
depend on the probability p that newcomers connect to the role
model, but is an increasing function of the probability q that the
newcomer connects to the role model’s neighbours. This agrees
with the intuition gained from simulations. Eq. (42) in the
appendix gives an exact formula that holds for any mutation rate
and any population size. For low mutation rate and large popula-
tion size we find a simple condition for cooperators to prevail,
b=c4 ð3þ3nþn2Þ=ð2nþn2Þ, where n¼Nð1%qÞ is the structural
mutation rate (Antal et al., 2009b; Tarnita et al., 2009a), defined
as the product of population size and the probability of not adding
a link between newcomer and a role model’s neighbour. We see
that the critical benefit-to-cost ratio approaches one for small
values of q; here isolated nodes and very small components
provide a favourable context for cooperation. For high values of
q the critical benefit-to-cost ratio approaches infinity, because the
resulting highly connected networks do not allow the evolution of
cooperation (Lieberman et al., 2005; Ohtsuki et al., 2006; Szabó
and Fáth, 2007). Thus, the weak selection analysis is able to
capture the dependence of the critical benefit-to-cost ratio on the
parameter q and its independence of p, but is not a complete
description of the complex evolutionary phenomena observed in
the simulations (Nowak et al., 2010a; Traulsen et al., 2010).

4. Discussion

Our results show that imitation and varying connectivity
constitute a powerful general mechanism for the evolution of
cooperation (Nowak, 2006b; Nowak et al., 2010b). We note that
this is achieved without the ability of nodes to adjust their
strategies or connections (Poncela et al., 2008; Santos et al.,
2006), as considered in co-evolutionary networks (Gross and
Sayama, 2009; Hanaki et al., 2007; Perc and Szolnoki, 2010).
As shown in Fig. 4, already for b/c¼1.1 we find a large p, q-region
where the long term cooperation is greater than 75%. For b/
c¼1.5 there is an even larger p, q-region which gives a long term
cooperation higher than 90%. Cooperators are less abundant than
defectors only for very low values of p or for very high values of q.
If the probability p to connect to the role model is very small,
individual cooperators are unlikely to predominate or form
connected components.

If the probability q to connect to the role model’s neighbours is
very large, then the network typically consists of a single highly
connected component which behaves like a well-mixed popula-
tion. In this case defectors dominate.

An intuitive explanation of the described behaviour is that for
low q values, cooperators dominate the population, but the

network is fragmented; the isolated cooperators do not interact
and thus generate low payoff. The prosperity of the network
increases as q increases, but if q is too large the network becomes
highly connected and cooperators cannot fend off invasion by
defectors. Thus, there is an intermediate value of q that max-
imizes the long term prosperity. Interestingly, as can be observed
in Figs. 4 and 5, the zone of maximum long term prosperity is
close to the q value that maximizes the number of transitions
between the all-cooperator and all-defector states. In this area of
high prosperity the simulations show periods of well-connected
networks of cooperators that are frequently interrupted by short-
lived transitions to all-defectors (as in Fig. 2). Thus in our model
the population is most productive when it is unstable; the long
term prosperity is maximized when the frequency of transitions
is near its peak. Prosperity increases as more connections
between cooperators arise, however as the network becomes
more highly connected it begins to resemble a well-mixed
population where defectors can take over (Lieberman et al.,
2005; Ohtsuki et al., 2006; Szabó and Fáth, 2007). The prolifera-
tion of defectors subsequently fragments the network (Figs. 2E–G
and 3A), which can then be rapidly rebuilt by a new invasion of
cooperators (Figs. 2H and 3B). We note that oscillations between
cooperators and defectors have also been observed in other
approaches and are a recurrent theme in the evolution of
cooperation (Hauert et al., 2006; Nowak and Sigmund, 1989;
Wakano et al., 2009).

Our results show that, for dynamic networks, the long term
connectivity alone is not an adequate indication of both the level
of cooperation and the level of prosperity. This is illustrated in
Fig. 4, where it is clear that the average number of cooperators
does not follow the trend of connectivity. Moreover, the curve of
connectivity shown in Fig. 5B is not monotonic: a single value of
connectivity may correspond to three different combinations of
cooperation and prosperity. This highlights the fact that the way a
network is transformed can strongly affect the spreading of
cooperation, obtaining, in a different framework, a result that
has been shown for growing networks in Poncela et al. (2009).
It would be possible to make a quantitative comparison with
results obtained on static networks having the same average
degree distribution and population ratio as our dynamic net-
works, however such average networks do not generally corre-
spond to the typical networks seen during simulations, as
illustrated in Fig. 2, and such a comparison would be inconclusive.

These results suggest that formation and fragmentation of
complex structures (Albert et al., 2000; Barabasi and Albert, 1999;
Levin, 2000; Paperin et al., 2011) are correlated and may be a
consequence of imitation and internal conflicts between coopera-
tors and defectors; here, the same mechanism that leads to the
emergence of a complex network can ultimately cause its frag-
mentation and allows its subsequent reformation. The presented
model is clearly an abstraction of reality, however we note that
there are examples of real systems where the collapse and
reformation of the network can be plausibly explained by con-
flicts between cooperators and defectors. For instance, in bacterial
communities, which have been considered as networks in Davies
et al. (1998), cooperating cells of Pseudomonas fluorescens build
biofilms, but mutant cells (defectors) that do not produce the
necessary adhesive factors are able to spread, leading to the
fragmentation of the structure. The biofilm can then be reformed,
under suitable environmental conditions, by the remaining coop-
erators (Rainey and Rainey, 2003), potentially leading to a cycle of
formation and fragmentation. Similar phenomena are observed in
the fruiting bodies formed under starvation conditions by coop-
erative cells of Myxococcus Xanthus: defectors invade the popula-
tion, leading to disruption of the fruiting body structure and
possible reconstruction by the cooperative survivors (Travisano
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and Velicer, 2004). It is also tempting to draw parallels between
our results and recent financial crises. These crises (Haldane,
2009a; Haldane and May, 2011; May et al., 2008) have been
preceded by a great increase of the financial network connectivity
and followed by network fragmentation (Billio et al., 2010;
Haldane and May, 2011). The role of imitation and the presence
of cooperative and ‘greedy’ financial institutions have been
subjects of the debate on the causes of these crises (Haldane,
2009a).

We have constructed a game theoretic model of dynamic
networks able to capture the co-evolutionary interplay between
the spreading of cooperators, defectors and the formation and
fragmentation of networks. Nodes can be cooperators or defectors
and are subject to simple evolutionary criteria: newcomers copy
the strategies and connections of successful role-models and old
nodes are randomly removed. We have performed simulations
and analyses of our model which indicate that it constitutes an
effective mechanism for the evolution of cooperation. Moreover,
our simulations suggest that endogenous conflicts between coop-
erators and defectors can cause the periodic formation and
fragmentation of complex structures observed in a range of
real-world systems. In this light, the prosperity and instability
of such complex networks are negatively correlated. While we are
aware that there exist many alternatives and potential extensions
to our model, we feel that it already captures some of the
fundamental mechanisms at work in reality. We believe our
findings demonstrate the role and the perils of imitation in the
presence of conflicts between cooperators and defectors, suggest-
ing a general trade-off between individual benefit, global welfare
and stability in complex networks (Bascompte, 2009; Jackson,
2008; May et al., 2008; Schweitzer et al., 2009; Stiglitz, 2010).
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Appendix A. Analytical solution for the limit of weak selection

Here we give a complete analytic description of our model for
the case of weak selection, d-0.

A.1. Model description

We briefly recall here the description of our model. We
consider a population of fixed size, N, on a dynamic graph. There
are two types of individuals, cooperators and defectors. Coopera-
tors pay a cost, c, for each neighbour to receive a benefit b.
Defectors pay no cost and provide no benefits. If for example a
cooperator is connected to k individuals of whom j are coopera-
tors, then his payoff is payoff¼ jb%kc. We use an exponential
fitness function. The effective payoff of an individual is
ð1þdÞpayoff , where d is a parameter that scales the intensity of
selection.

At any one time step a new individual enters the population
and another – randomly chosen – individual exits. This can be

done in two ways and we will analyse both. One option is that
first someone exits at random and then the newcomer enters; we
call this Death–Birth (DB) updating. The other option is that first
the newcomer enters and afterwards someone exits; we call this
Birth–Death (BD) updating. In the limit of large population size
these two processes have the same behaviour; however, for small
N there are differences between the two processes. For complete-
ness we will do the calculation for both, for exact N.

The newcomer is chosen independently from the individual
who exits. Thus interactions on our structure are local, but
reproduction is global. We will call this global updating.

The newcomer picks one of the existing individuals as a role
model. This choice is proportional to the effective payoff. With
probability p the newcomer establishes a link to his role model.
With probability q the newcomer inherits any one link of the role
model. Thus if the role model has k links, then the newcomer
inherits all of them with probability qk.

Strategy mutation occurs at rate u. With probability 1%u the
newcomer adopts the strategy of the role model, but with
probability u he adopts the other strategy.

A.2. Model analysis

We are studying a Markov process over a state space described
as follows. A state S is given by a binary strategy vector S
¼ ðS1, . . . ,SnÞ and a binary connection matrix V ¼ ½vij): si is the
strategy of individual i and it is 1 if i is a cooperator and
0 otherwise; vij is 1 if i and j are connected and 0 otherwise.

Let x be the frequency of cooperators. We say that on average
cooperators are favoured over defectors if

/xS41
2 ð1Þ

where / &S denotes the average taken over the stationary
distribution of the Markov process. We will now consider how
the frequency of cooperators can change from a state to another.
There is a change due to selection Dxsel and a change due to
mutation which on average balance each other. Thus, on average,
the total change in the frequency of cooperators is /DxtotS¼ 0.
Tarnita et al. (2009a), Antal et al. (2009a, 2009b) have shown that
for global updating, the condition (1) that cooperators are
favoured over defectors is equivalent to asking that the average
change due to selection in the frequency of cooperators is
positive. In other words, cooperation wins if on average selection
favours it:

/DxselS40 ð2Þ

We can explicitly write the average over the stationary distribu-
tion as

/DxselS¼
X

S

Dxsel
S pS ð3Þ

Here Dxsel
S is the change due to selection in state S and pS is the

probability that the system is in state S. Since we are interested in
the results obtained in the weak selection limit, d-0, we only
need to work with the constant and first-order terms in d of the
expression (2). The constant term is the average change in the
frequency of cooperators at neutrality, which is zero. Using our
assumption that the transition probabilities are analytic at d¼ 0
we can conclude as in Tarnita et al. (2009b) that the probabilities
pS and the change due to selection in each state DxS are also
analytic at d¼ 0. Hence we can write the first order Taylor
expansion of the average change due to selection at d¼ 0:

/DxselS* d
X

S

@Dxsel
S

@d

!!!!!
d ¼ 0

pSðd¼ 0Þþ
X

S

Dxsel
S ðd¼ 0Þ

@pS

@d

!!!!
d ¼ 0

 !

ð4Þ
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In particular, since we are only dealing with global updating with
constant death (individuals are replaced at random with prob-
ability 1/N), the change in frequency at neutrality in each state is
zero. Thus the second term in (4) is zero and hence, in the limit of
weak selection, condition (2) becomes

/DxselS*
X

S

@Dxsel
S

@d

!!!!!
d ¼ 0

pSðd¼ 0Þ :¼
@Dxsel

@d

!!!!
d ¼ 0

" #

0

40 ð5Þ

Here :¼ denotes notation; / &S0 denotes the average over the
stationary distribution at neutrality, d¼ 0. It is weighted by the
probability pSðd¼ 0Þ that the system is in state Z at neutrality.
In other words, in the limit of weak selection, the condition that the
average change due to selection is greater than zero is equivalent to
the condition that the neutral average of the first derivative with
respect to d of the change due to selection is greater than zero.

Next we can explicitly write the expected change due to
selection in a certain state as

Dxsel ¼
X

i

siðwi%1Þ ð6Þ

where wi is the expected number of offspring of individual i. We
are dealing with a Moran process with global updating and hence
we can write

wi ¼ 1%
1
N
þ

f iP
jf j

ð7Þ

This is because each individual survives with probability 1%1/N and
gives birth with probability proportional to his payoff. In our model,
the effective payoff is given by the exponential function ð1þdÞpayoff ;
however, in the limit of weak selection, this becomes 1þdpayoff
and hence we can write the effective payoff of individual i as

f i ¼ 1þd
X

j

vijð%csiþbsjÞ ð8Þ

Here and throughout we assume that there are no self-interactions.
Substituting (7) and (8) into (6) and taking the limit of weak

selection we obtain

Dxsel ¼ d
X

i

si

X

j

vijð%csiþbsjÞ%
1
N

X

j

X

k

vjkð%csjþbskÞ

2

4

3

5

2

4

3

5

¼ d b
X

i,j

sisjvij%
1
N

X

i,j,k

siskvij

0

@

1

A%c
X

i,j

sivij%
1
N

X

i,j,k

siskvij

0

@

1

A

2

4

3

5

ð9Þ

Using (9) into (5) we obtain the condition for cooperators to be
favoured over defectors to be

b
c
4

/
P

i,jsivijS0%
1
N
/
P

i,j,ksiskvijS0

/
P

i,jsisjvijS0%
1
N
/
P

i,j,ksiskvijS0

ð10Þ

The critical benefit to cost ratio in (10) can be rewritten as
follows:

b
c
4

1%G

G%G
ð11Þ

where

G¼ Pr0ðsi ¼ sj9vij ¼ 1Þ

G ¼ Pr0ðsj ¼ sk9vij ¼ 1Þ ð12Þ

The notation Pr0 means that the probabilities are calculated at
neutrality. However, for simplicity we will use the notation Pr
from now on. To define G and G we pick three individuals i, j, k at
random with replacement such that i and j are connected. Given
this choice, G is the probability that i and j have the same strategy

and G is the probability that j and k have the same strategy.
In other words, G is the probability that two individuals that are
connected also have the same strategy, whereas G is the prob-
ability that two random individuals have the same strategy,
modified to account for the fact that the structure is dynamical.
We will proceed to calculate these quantities below.

A.3. Calculating G and G

For simplicity, we want to calculate quantities where the three
individuals are chosen without replacement. Let us make the
following notation:

z¼ Prðvij ¼ 19ia jÞ ð13Þ

g ¼ Prðvij ¼ 1 and si ¼ sj9ia jÞ ð14Þ

h¼ Prðvij ¼ 1 and si ¼ sk9ia jakÞ ð15Þ

Then the critical benefit-to-cost ratio (11) can be expressed in
terms of z, g and h as

b
c

$ %n

¼
ðN%2Þðz%hÞþz%g
ðN%2Þðg%hÞ%zþg

ð16Þ

In the large N limit we have

b
c

$ %n

¼
z%h
g%h

ð17Þ

Here for simplicity we use the same notation, but by z, g and h we
mean their large N limits.

Thus, for calculating the critical benefit-to-cost ratio in the limit
of weak selection, it suffices to find z, g and h in the neutral case: z is
the probability that two distinct randomly picked individuals are
connected; g is the probability that they are connected and have the
same strategy. For h we need to pick three distinct individuals at
random; then h is the probability that the first two are connected
and the latter two have the same strategy.

In general these quantities cannot be written as independent
products of the probability of being connected times the prob-
ability of having the same strategy. However, if we fix the time to
their most recent common ancestor (MRCA) and we take the limit
of large N, these quantities become independent (Wakeley, 2008).

Two individuals always have a common ancestor if we go back
in time far enough. However, we cannot know how far we need to
go back. Thus, we have to account for the possibility that t takes
values anywhere between 1 and 1. Note that t¼0 is excluded
because we assume that the two individuals are distinct. More-
over, we know that this time is affected neither by the strategies,
nor by the set memberships of the two individuals. It is solely a
consequence of the Moran dynamics.

A.3.1. Probability of given coalescence time
In what follows, for simplicity of the exposition we will do the

calculation for BD updating and, where different, we will specify
in footnotes what the corresponding quantities are for DB
updating.

We first find the probability that the two individuals coalesced
in time t¼1. This probability differs between the two processes.
Thus, for BD updating7 we must have that one of them is the

7 For DB updating we must have that one of them is the parent and the other
is the offspring, which happens with probability 2=½NðN%1Þ). Then we can write
that

PðtÞ ¼ 1%
2

NðN%1Þ

$ %t%1 2
NðN%1Þ
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parent and the other is the offspring; moreover, we have to make
sure that the parent has not died in the last update step. Hence
the probability that they coalesced in time t¼1 is 2=N2 which
gives

PðtÞ ¼ 1%
2

N2

$ %t%1 2

N2
ð18Þ

Similarly, we can write the probability that three individuals
coalesce such that the first two have a MRCA t3 update steps
backward and this MRCA and the third individual require t2 more
update steps to coalesce.

For BD updating,8 this probability is given by

Prðt3,t2Þ ¼ 1%
6

N2

$ %t3%1 6

N2
1%

2

N2

$ %t%1 2

N2
ð19Þ

If we introduce a rescaled time tn ¼ tn=ðN2=2Þ and consider the
continuous-time process in the limit of N large we obtain the
probability density functions which are identical for both DB and BD

pðtÞ ¼ e%t

pðt3,t2Þ ¼ 3e%3t3%t2 ð20Þ

A.3.2. Probability that two individuals have the same strategy at
time T¼t from the MRCA

Let Ps(t) be the probability that two individuals have the same
strategy at time T¼t from the MRCA. At time T¼1 we have
Psð1Þ ¼ 1%u. In general, the probability that two individuals have
the same strategy at time T¼t is the probability that their ancestors
had the same strategy in the previous step, at time T ¼ t%1 plus/
minus what is gained/lost by mutation if there was a reproductive
step in their ancestry lines from time t%1 to time t. That is

PsðtÞ ¼ Psðt%1Þð1%PB2þPB2ð1%uÞÞþð1%Psðt%1ÞÞuPB2 ð21Þ

where PB2 is the probability that a birth event happened in the
ancestry lines of two individuals in the previous update step. It
easily follows that the probability that two individuals have the
same strategy at time T¼t from the MRCA is

PsðtÞ ¼
1
2
þ

1%2u
2
ð1%2uPB2Þt%1 ð22Þ

For BD updating9 it is easy to see that PB2 ¼ 2ðN%1Þ=ðN2%2Þ.

For the continuous time process, letting t¼ t=ðN2=2Þ we obtain
the density function

psðtÞ ¼
1þe%mt

2
ð23Þ

where m¼ 2Nu. Note that we are taking the limits of large N and
small u at the same time, such that m¼ 2Nu is a well-defined
quantity.

A.3.3. Probability that two individuals are connected at time T¼t
from the MRCA

Let Pc(t) be the probability that two individuals are connected
at time T¼t from the MRCA. Clearly at time T¼1 we have
Pcð1Þ ¼ p. In general, the probability that two individuals are
connected at time T¼t after their MRCA is the same as the
probability that their ancestors were connected at time T¼t%1
multiplied by the probability that in the subsequent update step
they stayed connected (either because neither of them was picked
for reproduction or if either was picked the offspring established a
connection). Thus, we have

PcðtÞ ¼ Pcðt%1Þðð1%PB2ÞþqPB2Þ ð24Þ

where PB2 is as before, the probability that a birth event happened
in the ancestry lines of two individuals in the previous update
step. Thus we find that

PcðtÞ ¼ p 1%ð1%qÞPB2ð Þt%1 ð25Þ

For the continuous time process, letting t¼ t=ðN2=2Þ we obtain
the density function

pcðtÞ ¼ pe%nt ð26Þ

Fig. A1. There are three possibilities for the ancestry of three individuals: (a) i and j coalesce first and then they coalesce with k; (b) j and k coalesce first and then they
coalesce with i; (c) i and k coalesce first and then they coalesce with j. Each case happens with probability 1/3.

Fig. A2. Critical benefit-to-cost ratio as a function of the effective connection
mutation rate u¼Nð1%qÞ. The effective strategy mutation rate is m¼ 0, 10 and 100.
The origin of the axes is (0,1).

8 For DB updating we have

Prðt3 ,t2Þ ¼ 1%
6

NðN%1Þ

$ %t3%1 6
NðN%1Þ

1%
2

NðN%1Þ

$ %t2%1 2
NðN%1Þ

9 For DB updating, the probability PB2 is the probability of picking in the
previous update step a death–birth pair such that neither of the two dies but one
of them gives birth. Thus PB2 ¼ 2ðN%2Þ=½NðN%1Þ%2) ¼ 2=ðNþ1Þ for DB updating.
The recurrence relation is identical.
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where n¼Nð1%qÞ. As before, this quantity is meaningful as it is
taken for the limit of large N and large q.

Note that if at time T¼1 after the MRCA two individuals are
not connected, then their offspring will not be connected no
matter what. However, after T¼1 all that matters is the prob-
ability q that offspring add links to their parents’ neighbours.

A.3.4. Critical benefit-to-cost ratio for N large
As discussed in Wakeley (2008), Antal et al. (2009a), and

Tarnita et al. (2009a), in the limit of large population size the
probability that two individuals are connected and have the same
strategy at time t after the MRCA is a product of the respective
independent probabilities. In this case we can write

z¼
Z 1

0
pcðtÞpðtÞ dt¼

p
1þn

g ¼
Z 1

0
pcðtÞpsðtÞpðtÞ dt¼

pð2þ2nþmÞ
2ð1þnÞð1þnþmÞ

h¼
1
3

Z 1

0
dt3

Z 1

0
dt2½psðt3Þpcðt3þt2Þþpsðt3þt2Þpcðt3Þ

þpsðt3þt2Þpcðt3þt2Þ)pðt3,t2Þ

¼
pðm3þ2m2ð3þnÞþ2ð1þnÞð3þnÞþmð11þnð9þnÞÞÞ

2ð1þmÞð1þnÞð1þmþnÞð3þmþnÞ ð27Þ

where m¼ 2Nu and n¼Nð1%qÞ.
Using (17) we can calculate the critical benefit to cost ratio to be

b
c

$ %n

¼
z%h
g%h

¼
3þm2þ2mð2þnÞþnð3þnÞ

nð2þmþnÞ ð28Þ

This result holds for both DB and BD updating. In the limit of low
strategy mutation, the benefit-to-cost ratio simplifies to (Fig. A2)

b
c

$ %n

¼
3þ3nþn2

nð2þnÞ ð29Þ

Finally, using the result in Tarnita et al. (2009b) we can
calculate the structure coefficient s

s¼ ðb=cÞnþ1

ðb=cÞn%1
¼ 2n%1þ

6
3þn ð30Þ

A.4. Critical benefit-to-cost ratio for exact N

For exact N, the probabilities above are not independent.
Hence, we need to calculate directly the probability that two
individuals are connected and have the same strategy at time t
after the MRCA. Similarly for the other quantities.

A.4.1. Probability that two individuals are connected
First we calculate the probability z that two individuals

are connected. This follows directly from our derivation above,
using (24)

z¼
X1

t ¼ 1

PcðtÞPðtÞ ð31Þ

For BD updating we find10 we find

z¼
p

Nð1%qÞþq
ð32Þ

A.4.2. Probability that two individuals are connected and have the
same strategy

Let Pcs(t) be the probability that two individuals are connected
and have the same strategy at time t after the MRCA. Then
Pcsð1Þ ¼ pð1%uÞ. In general, for two individuals to be connected
and have the same strategy at time t it is necessary that their
ancestors at time t%1 were connected but it is not necessary that
they had the same strategy. Letting Pcs ðtÞ be the probability that
two individuals are connected but do not have the same strategy
at time t we can write

PcsðtÞ ¼ Pcsðt%1Þð1%PB2þPB2ð1%uÞqÞþPcs ðt%1ÞPB2qu

Pcs ðtÞ ¼ Pcs ðt%1Þð1%PB2þPB2ð1%uÞqÞþPcsðt%1ÞPB2qu ð33Þ

Solving the recurrences with base cases Pcsð1Þ ¼ pð1%uÞ and
Pcs ð1Þ ¼ pu we obtain

PcsðtÞ ¼
p
2
ðð1%ð1%qÞPB2Þt%1þð1%2uÞð1%ð1%qþ2quÞPB2Þt%1Þ ð34Þ

Here the recurrence is the same for both DB and BD updating; the
only difference is in the value of PB2 as specified before. To find g
we then need to calculate the infinite sum

g ¼
X1

t ¼ 1

PcsðtÞPðtÞ ð35Þ

For BD updating11 we find

g ¼
pð2qð%1þ2uÞþNð%2%2qð%1þ2uÞþ2uÞÞ
2ðNð%1þqÞ%qÞðNþq%Nqþ2ð%1þNÞquÞ

ð36Þ

A.4.3. Probability that first two are connected and latter two have
same strategy

This calculation is along the same lines as above. However,
now we need to take into account the three coalescent probabil-
ities (as in Fig. A1). Each one of them happens with probability 1/
3. Let PCS(t) be the probability that given three random indivi-
duals, the first two are connected and the latter two have the
same strategy. Let PCS ðtÞ be the probability that the first two are
connected but the latter two do not have the same strategy. Then
one can write

PCSðt2,t3Þ ¼ PCSðt2,t3%1Þð1%PB3þPB3
1
3ðqþ1%uþqð1%uÞÞÞ

þPCS ðt2,t3%1ÞPB3
1
3uð1þqÞ

PCS ðt2,t3Þ ¼ PCS ðt2,t3%1Þð1%PB3þPB3
1
3ðqþ1%uþqð1%uÞÞÞ

þPCSðt2,t3%1ÞPB3
1
3uð1þqÞ ð37Þ

Here PB3 is the probability that there was a birth event in the
ancestry lines of the three individuals.

For BD updating12 we have PB3 ¼ 3ðN%2Þ=ðN2%6Þ.
Next we need to write the base case recurrences. These depend on

which of the three cases in Fig. A1 we are in. Thus we have

+ if we are in case (a), such that individuals i and j coalesced first
and then they coalesced with k then

PCSðt2þ1;0Þ ¼ Psðt2Þ
p
2
ð2%uÞþð1%Psðt2ÞÞ

p
2

u

PCS ðt2þ1;0Þ ¼ ð1%Psðt2ÞÞ
p
2
ð2%uÞþPsðt2Þ

p
2

u ð38Þ

10 For DB updating we find

z¼
p

Nð1%qÞ%1þ2q

11 For DB updating we find

g¼
pð2%4qð1%2uÞ%2uþNð%2%2qð%1þ2uÞþ2uÞÞ

2ð1þNð%1þqÞ%2qÞð%1þNþ2q%Nqþ2ð%2þNÞquÞ

12 For DB updating we have PB3 ¼ 3=ðNþ2Þ.
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where Ps(t) is, as before, the probability that two individuals
have the same strategy at time t after their MRCA.
+ if we are in case (b), such that individuals j and k coalesced

first and then they coalesced with i then

PCSðt2þ1;0Þ ¼ Pcðt2Þ12ð1%uÞð1þqÞ

PCS ðt2þ1;0Þ ¼ Pcðt2Þ12uð1þqÞ ð39Þ

where Pc(t) is, as before, the probability that two individuals
are connected at time t after their MRCA.
+ if we are in case (c), such that individuals i and k coalesced first

and then they coalesced with j then

PCSðt2þ1;0Þ ¼ Pcsðt2Þ
1
2
ðqþ1%uÞþPcs ðt2Þ

u
2

PCS ðt2þ1;0Þ ¼ Pcs ðt2Þ
1
2
ðqþ1%uÞþPcsðt2Þ

u
2

ð40Þ

where Pcs(t) and Pcs ðtÞ are, as before, the probability that two
individuals are connected and have the same strategy at time t
after their MRCA, respectively that they are connected but do
not have the same strategy.

Performing this calculation for BD updating13 we obtain
h¼numerator/denominator:

numerator¼ pð2qð1%2uÞ2ð%1þ2qð%1þuÞþ2uÞ
%Nð%1þ2uÞð2ð%1þqÞð1þ3qÞ

þð5%3qð1þ8qÞÞuþ2ð1þqÞð%1þ9qÞu2Þ

þ2N2ð%ð%1þqÞ2þ9ð%1þqÞqu

þð5þð3%20qÞqÞu2þ2ð1þqÞð%1þ6qÞu3Þ

%2N3uð1þqð%1þuÞþuÞð1þqð%1þ2uÞÞÞ

denominator¼ 2ðNð%1þqÞ%qÞð1þ2ð%1þNÞuÞðNþq%Nq

þ2ð%1þNÞquÞð1þNþ2q%Nqþð%2þNÞð1þqÞuÞ

ð41Þ

A.4.4. Benefit-to-cost ratio for exact N
Using formula (16) together with (32), (36) and (41) we obtain

the exact critical benefit-to-cost ratio for BD updating14 to be
ðb=cÞn ¼ num=den where

num¼%2qð%1þ2uÞð%1þ2qð%1þuÞþ2uÞ

þ2N3ð1þqð%1þuÞþuÞð1þqð%1þ2uÞÞ

%2N2ð1þuþqð%5þ4qþ3ð1%4qÞuþ8ð1þqÞu2ÞÞ
þNð%1þ2uþqð%3%8uþ10ðq%3quþ2ð1þqÞu2ÞÞÞ

den¼ 2N3ð%1þqÞð1þqð%1þuÞþuÞð%1þ2uÞ
%2qð%1þ2uÞð%1þ2qð%1þuÞþ2uÞ

%4N2ð1þqð%3þ2qÞþuþð5%6qÞquþð%3þqþ4q2Þu2Þ
þNð%3þ2ð5%4uÞuþ10q2ð%1þuÞð%1þ2uÞ
þqð%7þ4uð1þ3uÞÞÞ ð42Þ

A.5. Comparison with neutral simulations

In this section we use the numerical simulation method devel-
oped by Nathanson et al. (2009) to verify the accuracy of our
calculations. Tarnita et al. (2009b) show that for any structured
population, under very mild assumptions, the weak selection condi-
tion for strategy cooperators to be favoured over defectors is given by

b
c
4

sþ1
s%1

ð43Þ

For global updating with constant death or birth rates, Nathanson
et al. (2009) find an expression for the structure coefficient s which
enables us to perform very fast and accurate numerical simulations.
For each state of the system, let NA be the number of individuals
using strategy A; the number of individuals using strategy B is
NB ¼N%NA. Furthermore, let IAA denote the total number of encoun-
ters that A individuals have with other A individuals. Note that every
AA pair is counted twice because each A individual in the pair has an
encounter with another A individual. Let IAB denote the total number
of interactions that an A individual has with B individuals. Then the
structure coefficient, s, can be written as

s¼ /IAANBS0

/IABNBS0
ð44Þ

This suggests a simple numerical algorithm for calculating this
quantity for our spatial process. We simulate the process under
neutral drift for many generations. For each state we evaluate NB, IAA,
and IAB. We add up all NBIAA products to get the numerator in Eq. (3),
and then we add up all NBIAB products to get the denominator. We
obtain the perfect agreement in Fig. A3.

A.6. Prosperity

In this section we calculate the average wealth of the popula-
tion for weak selection. Let F be the total effective payoff of the
population after taking the limit of weak selection. It can be
written as F ¼NþdP where P is the total payoff in the population.
What we want to maximize is W ¼/FS¼Nþd/PS which is the
average prosperity. The total payoff in the population in a state Z
can be written as

P¼
X

i

X

j

vijð%csiþbsjÞ ð45Þ

Thus the prosperity becomes

W ¼Nþd
X

i

X

j

vijð%csiþbsjÞ

* +

¼Nþdðb%cÞ
X

i

X

j

sivij

* +

¼Nþdðb%cÞN2 Prðsi ¼ 1 and vij ¼ 1Þ ð46Þ

Thus what needs to be maximized is the average probability at
neutrality that two random individuals are connected and the
first one is a cooperator. This turns out to be

Prðvij ¼ 1Þ ¼
p

1þn ð47Þ

13 For DB updating we obtain

numerator¼ pð%2ðNð%1þqÞ%3qÞð1þNð%1þqÞ%2qÞþð%7%2N3ð%1þqÞ2

þ6N2ð%1þqÞð%1þ4qÞþqð%15þ76qÞþNð3þð53%78qÞqÞÞu
þ2ð12%Nð19þð%8þNÞNÞ%18qþNð%1þð9%2NÞNÞq

þð%2þNÞð36þNð%23þ3NÞÞq2Þu2

%4ð%2þNÞð1þqÞð%1þNþð%5þNÞð%2þNÞqÞu3Þ

denominator¼ ð2ð1þNð%1þqÞ%2qÞð1þ2ð%2þNÞuÞð%1þNþ2q%Nq

þ2ð%2þNÞquÞðNþ3q%Nqþð%3þNÞð1þqÞuÞÞ

14 For DB updating we have

num¼%2þ7N%6N2þ2N3þ12q%25Nqþ18N2q

%4N3q%16q2þ24Nq2%12N2q2þ2N3q2

þ2ðNð3þð%3þNÞNÞþNð7þNð%7þ2NÞÞq

%3ð%2þNÞ3q2%3ð1þqÞÞu

þ4ð%2þNÞð1þqÞð%1þð%2þNÞ2qÞu2

den¼%2þ7N%8N2þ2N3þ12q%31Nqþ20N2q

%4N3q%16q2þ24Nq2%12N2q2þ2N3q2%

%2ð3%6NþN3þð3%2Nð11þNð%9þ2NÞÞÞqþ3ð%2þNÞ3q2Þu

þ4ð%2þNÞð1þqÞð%1þ3N%N2þð%2þNÞ2qÞu2
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Thus, for weak selection, the prosperity of the system increases
with q, which is a result we observe in the simulations. However,
what we do not find in our calculation for weak selection is an
optimum intermediate q which maximizes the prosperity. This is
because at neutrality this calculation does not capture the
clustering behaviour of cooperators as opposed to the dispersing
behaviour of defectors because at neutrality they are interchange-
able labels. As the intensity of selection is increased the prob-
ability of being connected reflects more and more the clustering
effect. Above we give the plot of this probability for weak
selection (Fig. A4).

Appendix B. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.jtbi.2011.09.005.
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