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Many specific models have been proposed to study evolutionary
game dynamics in structured populations, but most analytical
results so far describe the competition of only two strategies. Here
we derive a general result that holds for any number of strategies,
for a large class of population structures under weak selection. We
show that for the purpose of strategy selection any evolutionary
process can be characterized by two key parameters that are
coefficients in a linear inequality containing the payoff values.
These structural coefficients, σ1 and σ2, depend on the particular
process that is being studied, but not on the number of strategies,
n, or the payoff matrix. For calculating these structural coefficients
one has to investigate games with three strategies, but more are
not needed. Therefore, n = 3 is the general case. Our main result
has a geometric interpretation: Strategy selection is determined by
the sum of two terms, the first one describing competition on the
edges of the simplex and the second one in the center. Our for-
mula includes all known weak selection criteria of evolutionary
games as special cases. As a specific example we calculate games
on sets and explore the synergistic interaction between direct rec-
iprocity and spatial selection. We show that for certain parameter
values both repetition and space are needed to promote evolution
of cooperation.

Evolutionary games arise whenever the fitness of individuals
is not constant, but depends on the relative abundance of

strategies in the population (1–7). Evolutionary game theory is
a general theoretical framework that can be used to study many
biological problems including host–parasite interactions, eco-
systems, animal behavior, social evolution, and human language
(8–18). The traditional approach of evolutionary game theory
uses deterministic dynamics describing infinitely large, well-
mixed populations. More recently the framework was expanded
to deal with stochastic dynamics, finite population size, and
structured populations (19–32).
Here we consider a mutation–selection process acting in

a population of finite size. The population structure determines
who interacts with whom to accumulate payoff and who com-
petes with whom for reproduction. Individuals adopt one of n
strategies. The payoff for an interaction between any two strat-
egies is given by the n × n payoff matrix A = [aij]. The rate of
reproduction is proportional to payoff: Individuals that accu-
mulate higher payoff are more likely to reproduce. Reproduction
is subject to symmetric mutation: With probability 1 − u the
offspring inherits the strategy of the parent, but with probability
u a random strategy is chosen. Our process leads to a stationary
distribution characterizing the mutation–selection equilibrium.
Important questions are the following: What is the average fre-
quency of a strategy in the stationary distribution? Which strat-
egies are more abundant than others?
To make progress, we consider the limit of weak selection.

One way to obtain this limit is as follows: The rate of re-
production of each individual is proportional to 1 + w Payoff,
where w is a constant that measures the intensity of selection; the
limit of weak selection is then given by w → 0. Weak selection is
not an unnatural situation; it can arise in different ways: i) Payoff
differences are small, ii) strategies are similar, and iii) individuals
are confused about payoffs when updating their strategies. In
such situations, the particular game makes only a small contri-
bution to the overall reproductive success of an individual.

For weak selection, all strategies have roughly the same av-
erage frequency, 1/n, in the stationary distribution. A strategy is
favored by selection, if its average frequency is >1/n. Otherwise it
is opposed by selection. Our main result is the following: Given
some mild assumptions (specified in SI Text), strategy k is fa-
vored by selection if

ðσ1akk þ !ak#− !a#k − σ1!a##Þ þ σ2ð!ak#− !aÞ> 0: [1]

Here !a## ¼ ð1=nÞ∑n
i¼1aii is the average payoff when both individ-

uals use the same strategy, !ak# ¼ ð1=nÞ∑n
i¼1aki is the average pay-

off of strategy k, !a#k ¼ ð1=nÞ∑n
i¼1aik is the average payoff when

playing against strategy k, and !a ¼ ð1=n2Þ∑n
i¼1∑

n
j¼1aij is the aver-

age payoff in the population. The parameters σ1 and σ2 are struc-
tural coefficients that need to be calculated for the specific
evolutionary process that is investigated. These parameters de-
pend on the population structure, the update rule, and the muta-
tion rate, but they do not depend on the number of strategies or on
the entries of the payoff matrix.
How can we interpret this result? Let xi denote the frequency of

strategy i. The configuration of the population (just in terms of
frequencies of strategies) is given by a point in the simplex Sn,
which is defined by ∑n

i¼1 xi ¼ 1. The vertices of the simplex cor-
respond to population states where only one strategy is present.
The edges of the simplex correspond to states where two strategies
are present. In the interior of the simplex all strategies are present.
Inequality [1] is the sum of two terms, both of which are linear in
the payoff values. The first term, σ1akk þ !ak# − !a#k − σ1!a##,
describes competition on the edges of the simplex that include
strategy k (Fig. 1A). In particular, it is an average over all pairwise
comparisons between strategy k and each other strategy, weighted
by the structural coefficient, σ1. The second term, σ2ð!ak# − !aÞ,
evaluates the competition between strategy k and all other strat-
egies in the center of the simplex, where all strategies have the
same frequency, 1/n (Fig. 1B).
Therefore, the surprising implication of our main result (Eq.

1) is that strategy selection (in a mutation–selection process in
a structured population) is simply the sum of two competition
terms, one that is evaluated on the edges of the simplex and the
other one in the center of the simplex. The simplicity of this
result is surprising because an evolutionary process in a struc-
tured population has a very large number of possible states; to
describe a particular state it is not enough to list the frequencies
of strategies but one also has to specify the population structure.
Further intuition for our main result is provided by the concept

of risk dominance. The classical notion of risk dominance for
a game with two strategies in a well-mixed population is as fol-
lows: Strategy i is risk dominant over strategy j if aii+ aij> aji+ ajj.
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If i and j are engaged in a coordination game, given by aii > aji and
ajj > aij, then the risk-dominant strategy has the bigger basin of
attraction. In a structured population the risk-dominance condi-
tion is modified to σaii + aij > aji + σajj, where σ is the structural
coefficient (31). Therefore, the first term in inequality 1 represents
the average over all pairwise risk-dominance comparisons be-
tween strategy k and each other strategy (taking into account
population structure). The second term in inequality 1 measures
the risk dominance of strategy k when simultaneously compared
with all other strategies in a well-mixed population; it is the gen-
eralization of the concept of risk dominance tomultiple strategies,
!ak# > !a.
In SI Text we show that the structural coefficients, σ1 and σ2,

do not depend on the number of strategies. To calculate σ1 and
σ2 for any particular evolutionary process, we need to consider
games with n = 3 strategies. More than three strategies are not
needed. Therefore, n = 3 is the general case. An important
practical implication of our result is the following: If we want to

calculate the competition of multiple strategies in a structured
population for weak selection but any mutation rate, then all we
have to do is to calculate two parameters, σ1 and σ2. This cal-
culation can be done for a very simple payoff matrix and n = 3
strategies. Once σ1 and σ2 are known, they can be applied to any
payoff matrix and any number of strategies.
For n=2 strategies, inequality [1] leads to (a11− a22)(2σ1 + σ2)

+ (a12 − a21)(2 + σ2) > 0. If 2 + σ2 ≠ 0, we obtain the well-known
condition σa11 + a12 > a21 + σa22 with σ = (2σ1 + σ2)/(2 + σ2).
Many σ-values have been calculated characterizing evolutionary
games with two strategies in structured populations (31).
For a large, well-mixed population we know that σ1 = 1 and

σ2 = μ, where μ = Nu is the product of population size and
mutation rate (30). Therefore, if the mutation rate is low, μ → 0,
then the evolutionary success of a strategy is determined by av-
erage pairwise risk dominance, akk þ !ak# − !a#k − !a##. If the mu-
tation rate is high, μ → ∞, then the evolutionary success depends
on risk dominance, !ak# − !a:
For any population structure, we can show that low mutation,

μ → 0, implies σ2 → 0. Therefore, in the limit of low muta-
tion, the condition for strategy k to be selected becomes
σ0akk þ !ak# > !a#k þ σ0!a## where σ0 is the low mutation limit of
the structure coefficient σ = (2σ1 + σ2)/(2 + σ2). Hence, for low
mutation it suffices to study two-strategy games, and all known σ
results (31) carry over to the multiple-strategy case.
In the limit of high mutation, μ → ∞, we conjecture (but

cannot prove) that, for a large class of processes, σ2 becomes
>>σ1 and >>1. In that case the selection condition is simply risk
dominance, !ak# − !a, which is also the high mutation limit for
a well-mixed population. Thus, if the mutation rate is large
enough, then the effect of population structure on strategy se-
lection is destroyed.
In SI Text we give a computational formula for how to cal-

culate σ1 and σ2 for any process with global updating (which
means all individuals compete globally for reproduction).

A B

Fig. 1. Our main result has a simple geometric interpretation, which is il-
lustrated here for the case of n = 3 strategies. (A) The first term of inequality
1 describes competition on the edges of the simplex. (B) The second term of
inequality 1 describes competition in the center of the simplex. In general,
the selective criterion for strategy 1 is the sum of the two terms.
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Fig. 2. The dependence of σ1 and σ2 on the strategy mutation rate, μ. We choose M = 100 sets and show different values of the set mutation rate: (A) ν = 0,
(B) ν = 3, (C) ν = 10, (D) ν = 100, (E) ν = 1,000, and (F) ν = ∞. We observe that σ2 ∼ μ. For ν → 0 and ν → ∞ we obtain the same behavior, because both cases
correspond to a well-mixed population. For a particular strategy mutation rate, μ*, we have σ1 = σ2. For μ < μ* structural effects prevail over mutation,
because σ1 > σ2. For μ > μ* mutation destroys the effect of population structure, because σ1 < σ2.
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Let us now study a specific evolutionary process, where the
individuals of a population of size N are distributed over M sets
(32). These sets can be geographic islands, social institutions, or
tags (32–35). At any one time each individual belongs to one set
and adopts one of n strategies. Individuals interact with others in
the same set and thereby obtain payoff. Individuals reproduce
proportional to payoff. Offspring inherit their parent’s strategy,
subject to a strategymutation rate, u, and their parent’s set, subject

to a set mutation rate, ν. We use rescaled mutation rates μ = Nu
and ν = Nv. In SI Text we calculate σ1 and σ2 for this process and
provide analytic results for large population size, N, but for any
numberof sets,M, and for anymutation rates. For largeμweobtain
σ1∼M(1+ ν)/(M+ ν) andσ2∼μ. Note that large strategymutation
rate, μ, destroys the effect of population structure, as expected.
In Fig. 2, we show the dependence of σ1 and σ2 on the strategy

mutation rate, μ. We choose M = 100 sets and show different
values of the set mutation rate, ν. For ν→ 0 and ν→∞ we obtain
the same behavior, because both cases correspond to a well-
mixed population. A particular strategy mutation rate, μ*, exists
for which σ1 = σ2. For μ < μ* structural effects prevail over
mutation, because σ1 > σ2. For μ > μ* mutation destroys the
effect of population structure, because σ1 < σ2. For large M, the
critical mutation rate is given by μ* ∼ 1 + ν.
We now use these results to study a particular game on sets. Our

game has three strategies, always cooperate (AllC), always defect
(AllD), and tit-for-tat (TFT), and ismeant to describe the essential
problem of evolution of cooperation under direct reciprocity. We
assume there are repeated interactions between any two players
subject to a certain continuation probability; and the average
number of rounds is given bym. In any one round, cooperation has
a cost, c, and yields benefit, b, for the other player, where b> c> 0.
Defection has no cost and yields no benefit.We use average payoff
per round to denote the entries of the payoff matrix:

AllC AllD TFT
AllC
AllD
TFT

0

@
b− c − c b− c
b 0 b=m

b− c − c=m b− c
:

1

A [2]

AllD is the only strict Nash equilibrium. If b− c≥ b/m, then TFT is
a Nash equilibrium, but not an evolutionarily stable strategy.
We are interested in calculating the condition for natural selec-

tion to oppose AllD, which means that its frequency is <1/3 in the
stationary distribution. We observe that selection opposes AllD for

Fig. 3. The effect of strategy and set mutations on the condition to select
against AllD. Selection opposes AllD for small strategy mutation rates and
intermediate set mutation rates. For high strategy mutation rate and for low
and high set mutation rate the structure behaves like a well-mixed pop-
ulation. There is an optimum set mutation rate. Parameters: b = 2, c = 1, m =
7, and M = 8.

Fig. 4. The synergistic interaction of direct reciprocity and spatial selection. For certain parameter choices neither repetition nor structure alone can select
against AllD. (A) c = 1, b = 3, μ = 0, and ν = 0.5. Either repetition or structure is sufficient. (B) c = 1, b = 2, μ = 0, and ν = 5. A minimum number of sets is needed.
(C) c = 1, b = 3, μ = 0, and ν = 0.05. A minimum number of rounds is needed. (D) c = 1, b = 2, μ = 0, and ν = 0.5. Both a minimum number of rounds and
a minimum number of sets are needed to select against AllD.
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small strategy mutation rates and intermediate set mutation rates
(Fig. 3). For high strategy mutation rate and for low or high set
mutation rate the structure behaves like a well-mixed population,
which is detrimental to cooperation. There is an optimum set mu-
tation rate that maximally supports evolution of cooperation (32).
Next we study how the condition for selecting against AllD

depends on repetition and structure (Fig. 4). We make the fol-
lowing observations. For b/c < 3, even if the game is infinitely
repeated, m → ∞, we still need population structure to oppose
AllD. In this parameter region repetition alone is not enough.
For b/c < 1 + (ν+ 3)/(ν (ν+ 2)), even if there are infinitely many
sets (M → ∞), we still need repetition to oppose AllD. Hence,
for certain parameter choices both repetition and spatial struc-
ture must work together to promote evolution of cooperation
(36, 37). This example demonstrates the need for synergistic
interactions between various mechanisms for the evolution of
cooperation (38). In particular it is of interest that unless the
benefit-to-cost ratio is substantial, b/c > 3, repetition alone does
not provide enough selection pressure to oppose AllD.
In summary, we have derived a simple, general condition that

characterizes strategy selection, if multiple strategies compete in

a structured population under weak selection. The condition is
linear in the payoff values and includes two structural coefficients,
σ1 and σ2, which depend on the population structure, the update
rule, and mutation rates, but do not depend on the number of
strategies or on the entries of the payoff matrix. The condition is
a simple sum of two terms: One describes competition on the
edges of the simplex and the other one describes that in the
center. Future research directions suggested by this result include
i) a classification of population structures and update rules based
on the two structural parameters, ii) numerical and analytic ex-
plorations of how the weak selection result carries over to
stronger selection intensities in specific cases, and iii) extending
our theory from pairwise interactions to multiplayer games. Fi-
nally our general result can be used to guide the exploration of
many specific evolutionary processes.
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