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a b s t r a c t

We develop a new method for studying stochastic evolutionary game dynamics of mixed strategies. We
consider the general situation: there are n pure strategies whose interactions are described by an n! n
payoff matrix. Players can use mixed strategies, which are given by the vector ðp1; . . . ; pnÞ. Each entry
specifies the probability to use the corresponding pure strategy. The sum over all entries is one.
Therefore, a mixed strategy is a point in the simplex Sn. We study evolutionary dynamics in a well-
mixed population of finite size. Individuals reproduce proportional to payoff. We consider the case of
weak selection, which means the payoff from the game is only a small contribution to overall fitness.
Reproduction can be subject to mutation; a mutant adopts a randomly chosen mixed strategy. We
calculate the average abundance of every mixed strategy in the stationary distribution of the
mutation–selection process. We find the crucial conditions that specify if a strategy is favored or
opposed by selection. One condition holds for low mutation rate, another for high mutation rate. The
result for any mutation rate is a linear combination of those two. As a specific example we study the
Hawk–Dove game. We prove general statements about the relationship between games with pure and
with mixed strategies.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary game theory is the study of frequency dependent
selection (Maynard Smith and Price, 1973; Maynard Smith, 1982;
Hofbauer and Sigmund, 1988; Weibull, 1995; Samuelson, 1997;
Cressman, 2003; Vincent and Brown, 2005; Nowak, 2006; Skyrms,
2003). The fitness of individuals is not constant but depends on
the composition of the population. Constant selection can be seen
as adaptation on a constant fitness landscape, but for frequency
dependent selection the fitness landscape changes as the popula-
tion moves over it (Nowak and Sigmund, 2004). The classical
approach to evolutionary game dynamics is based on the
replicator equation (Taylor and Jonker, 1978; Hofbauer et al.,
1979; Zeeman, 1980; Hofbauer and Sigmund, 1988, 1998). The
population is well-mixed and infinitely large. Any two individuals
are equally likely to interact. The fitness of individuals is given by
the expected payoff from all interactions. The dynamics are
described by deterministic differential equations.

Evolutionary game theory represents one of the foundations
for the mathematical approach to evolution. Evolutionary games
occur whenever the reproductive success of individuals depends

on interaction with other individuals, which is almost always the
case. Therefore, evolutionary game theory permeates every area of
biology including viral and bacterial evolution (Turner and Chao,
1999; Kerr et al., 2002), host parasite interactions (Nowak and
May, 1994), the evolution of metabolic pathways (Pfeiffer et al.,
2001), theoretical approaches to immunology (Anderson and May,
1991; Nowak et al., 1991, 1995), and the study of animal and
human behavior (Parker, 1974; Enquist and Leimar, 1983;
McNamara and Houston, 1986; Milinski, 1987; Fudenberg and
Tirole, 1991; Binmore, 1994; Ohtsuki and Iwasa, 2004; Nowak and
Sigmund, 2005). Understanding the evolution of animal
communication and human language requires evolutionary game
theory (Nowak and Krakauer, 1999; Nowak et al., 2002). The
Lotka–Volterra equation, which is a fundamental concept in
ecology describing the interaction of species in an ecosystem, is
equivalent to the replicator equation of evolutionary game
dynamics (Hofbauer and Sigmund, 1998).

Typically a game is formulated in terms of pure strategies,
which can be stochastic or deterministic. A payoff matrix
describes the outcome of an interaction between any two pure
strategies. Sometimes these pure strategies are the only options
available to the players. But in other situations it could be natural
that players have the possibility to use ‘mixed strategies’. A mixed
strategy is a vector whose entries specify the probability for using
each one of the pure strategies. A game with just pure strategies
need not have a Nash equilibrium. But a game with pure and
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mixed strategies always has a Nash (1950) equilibrium. Mixed
strategies allow a certain kind of randomization which could be
advantageous in certain games (Sklansky, 2005).

Consider a game with n pure strategies. The payoff values are
given by the n! n payoff matrix A ¼ ðaijÞ. This means that an
individual using pure strategy i receives payoff aij when interact-
ing with an individual that uses pure strategy j. Let us now
consider mixed strategies. A player can choose to play pure
strategy i with probability pi. A mixed strategy is thus given by a
stochastic vector p ¼ ðp1; . . . ; pnÞ with 0rpir1 and
p1 þ & & & þ pn ¼ 1. We denote the set of all such mixed strategies
by Sn; this is a simplex in Rn. The unit vectors ei correspond to the
pure strategies. The payoff of a mixed strategy p against a mixed
strategy q is given by the function Aðp;qÞ ¼ pAqT .

We focus on stochastic evolutionary dynamics in well-mixed
populations of finite size (Schaffer, 1988; Kandori et al., 1993;
Kandori and Rob, 1995; Schreiber, 2001; Nowak et al., 2004;
Taylor et al., 2004; Wild and Taylor, 2004; Traulsen et al., 2005,
2007a; Antal and Scheuring, 2006; Imhof et al., 2005; Imhof and
Nowak, 2006; Lessard and Ladret, 2007). Evolutionary updating
occurs according to the frequency dependent Moran
process (Nowak et al., 2004; Taylor et al., 2004), the frequency
dependent Wright–Fisher process (Imhof and Nowak, 2006) or the
pairwise comparison process (Szabó and T +oke, 1998; Traulsen
et al., 2007b). Reproduction is proportional to fitness and
subject to mutation. With probability 1' u the offspring
inherits the strategy of the parent. With probability u, the
offspring chooses one of the mixed strategies uniformly at
random. In a population of N players mutations occur at
rate m ¼ Nu.

A state of our system describes the strategy of each individual.
Our state space is SNn . We look at the stationary distribution of the
mutation–selection process and ask what are the average
stationary frequencies (abundances) of each strategy (Antal
et al., 2009b, c; Tarnita et al., 2009a, b). Note that we do not
calculate the stationary distribution over SNn . Instead, we calculate
the average density of each mixed strategy in the stationary
distribution. Then, we ask which strategies are favored, on
average, by selection, i.e. which strategies are more abundant
than the mean.

We study the case of weak selection. For the frequency
dependent Moran process, the effective payoff of an individual is
given by f ¼ 1þ d & payoff. Here d determines the intensity of
selection. Weak selection means d-0. To obtain results in
the limit of weak selection, we use a perturbation theory
method also employed in Antal et al. (2009b, c) and Tarnita
et al. (2009a).

For the game dealing only with the n pure strategies in a finite
well-mixed population, Antal et al. (2009c) obtained the following
result. In the limit of weak selection, all strategies have
approximately the same abundance, 1=n, in the stationary
distribution of the mutation–selection process. There are only
minor deviations from this uniform distribution. One can say that
selection favors a strategy if its abundance exceeds 1=n. Selection
opposes a strategy if its abundance is less than 1=n. It has been
shown that for lowmutation probability ðu51=NÞ, selection favors
strategy k if

Lk ¼
1
n

Xn

i¼1

ðakk þ aki ' aik ' aiiÞ40 ð1Þ

For high mutation probability ðub1=NÞ, selection favors strategy k
if

Hk ¼
1
n2

Xn

i¼1

Xn

j¼1

ðakj ' aijÞ40 ð2Þ

For arbitrary mutation probability, u, the general expression for
selection to favor strategy k is

Lk þ mHk40 ð3Þ

where m ¼ Nu is the rate of mutation. Moreover, strategy k is more
abundant than strategy j if and only if

Lk þ mHk4Lj þ mHj ð4Þ

Finally, the equilibrium abundance of strategy k is

xk ¼
1
n

1þ dNð1' uÞ
Lk þ mHk

ð1þ mÞð2þ mÞ

! "
ð5Þ

All these results of Antal et al. (2009c) hold for large, but finite
population size, N.

In this paper we analyze the same questions but for games
with mixed strategies. By analogy with Antal et al. (2009c), we use
global mutation rates. Hence, if a mutation occurs, then a mixed
strategy is chosen at random from a uniform distribution over the
simplex Sn. For a mixed strategy p ¼ ðp1; . . . ; pnÞ with 0rpir1 and
p1 þ & & & þ pn ¼ 1, let ~xp be the probability density of players using
strategy p. In the game of n pure strategies, one determines which
strategy is favored by comparing its abundance to the average,
1=n. In the game with mixed strategies, the equivalent condition
for a strategy to be favored is that its abundance is greater than
the mean, ~xp41=JSnJ where JSnJ ¼

ffiffiffi
n

p
=ðn' 1Þ!.

We establish the following results. For low mutation ðu51=NÞ,
strategy p is favored by selection if and only if

~Lp ¼
1

JSnJ

Z

Sn

½Aðp;pÞ þ Aðp;qÞ ' Aðq;pÞ ' Aðq;qÞ)dq40 ð6Þ

where
R
Sn
dq ¼

ffiffiffi
n

p R 1
0

R 1'q1
0 & & &

R 1'q1'&&&'qn'2

0 dqn'1 . . . dq2 dq1 and
qn ¼ 1' q1 ' & & & ' qn'1. Note that condition (6) gives a quadratic
hypersurface in p. For high mutation ðub1=NÞ, the condition for
strategy p to be favored by selection is

~Hp ¼
1

JSnJ2

Z

Sn

Z

Sn

½Aðp;qÞ ' Aðr;qÞ)dqdr40 ð7Þ

Note that (7) gives a hyperplane in p. For any mutation probability
u, strategy p is favored by selection if and only if

~Lp þ m ~Hp40 ð8Þ

where m ¼ Nu is the mutation rate. Moreover, strategy p is favored
over strategy q if and only if

~Lp þ m ~Hp4 ~Lq þ m ~Hq ð9Þ

Finally, the abundance (density) of strategy p is

~xp ¼
1

JSnJ
1þ dNð1' uÞ

~Lp þ m ~Hp

ð1þ mÞð2þ mÞ

 !
ð10Þ

All these results hold for large, but finite population size,
15N51=u and for payoff functions Að&; &Þ which are Riemann-
integrable. They allow a characterization of games with mixed
strategies, in the limit of weak selection and for global mutation.

To gain some qualitative understanding of our results, let us
first discuss the conditions for low and high mutation. When the
mutation is low, all players use the same strategy, until a mutant
strategy appears. This mutant strategy either takes over or dies
out before any new mutant appears. Thus, for low mutation, only
two strategies are involved in a takeover at any time. This explains
why the low mutation condition is an average over all pairwise
comparisons, Aðp;pÞ þ Aðp;qÞ ' Aðq;pÞ ' Aðq;qÞ. Conversely, for
high mutation rates, the densities of all strategies are close to
1/:Sn: all the time. Hence, the payoff of strategy p is

R
Sn
Aðp;qÞdq.

Strategy p is favored if its payoff is greater than the average payoff
of the population, which is

R
Sn

R
Sn
Aðr;qÞdrdq. This difference is
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equivalent to (7). Note that the condition for high mutation rate
holds for any intensity of selection, while the condition for low
mutation requires weak selection.

The rest of the paper is structured as follows. In Section 2 we
derive the general conditions for strategy selection for any
mutation rates. Games with two pure strategies are analyzed in
Section 3, and the Hawk–Dove game is considered as an example.
In Section 4 we present a few results for games with n pure
strategies. Our findings are discussed in Section 5.

2. Mixed strategies on the simplex

We consider a well-mixed population of N individuals. Each of
them plays a mixed strategy, based on n pure strategies. The
payoffs of the n pure strategies are given by the n! n matrix
A ¼ ðaijÞ. The payoff of a mixed strategy p ¼ ðp1; . . . ; pnÞ * Sn
playing another mixed strategy q ¼ ðq1; . . . ; qnÞ * Sn is given by
the function

Aðp;qÞ ¼ pAqT ¼
X

i;j

aijpiqj ð11Þ

First, we discuss the n ¼ 2 case and then turn to the general n
case, which is completely analogous.

When n ¼ 2, a mixed strategy is given by p ¼ ðp; p0Þ 2 S2 where
p is the probability to play strategy 1 and p0 is the probability to
play strategy 2. Moreover, pþ p0 ¼ 1. To integrate over the simplex
S2, we use the projection onto the line p0 ¼ 0. This is a line
segment of length 1 whose left end corresponds to p ¼ 0 which is
the pure strategy 2 and whose right end corresponds to p ¼ 1
which is the pure strategy 1. We partition the ½0;1) interval into
segments of length 1=m, as shown in Fig. 1, and allow onlym types
of mixed strategies. This means that strategy k ¼ ½k=m; ðm' kÞ=m),
plays the pure strategy 1 with probability k=m, and pure strategy 2
with probability ðm' kÞ=m. We are interested in the stationary
abundance of these strategies.

Now, we have turned our continuous problem into a discrete
one with m pure strategies, where we can use (1) and (2) to write

Lk ¼
1
m

Xm'1

i¼0

Aðk;kÞ þ Aðk; iÞ ' Aði;kÞ ' Aði; iÞ

Hk ¼
1
m2

Xm'1

i¼0

Xm'1

j¼0

Aðk; jÞ ' Aði; jÞ ð12Þ

and use (5) to obtain the frequency of strategy k. Here, for
simplicity we continue to write Aðp;qÞ for what in fact is the
function Aððp;1' pÞ; ðq;1' qÞÞ.

Taking the limit m-1, and given our assumption that the
payoff function is Riemann-integrable, the sums in (5) converge to
the integrals

~Lp ¼
Z 1

0
½Aðp;pÞ þ Aðp;qÞ ' Aðq;pÞ ' Aðq;qÞ)dq

¼
1ffiffiffi
2

p
Z

S2

½Aðp;pÞ þ Aðp;qÞ ' Aðq;pÞ ' Aðq;qÞ)dq

~Hp ¼
Z 1

0

Z 1

0
½Aðp;qÞ ' Aðq; rÞ)dqdr

¼
1
2

Z

S2

Z

S2

½Aðp;qÞ ' Aðq; rÞ)dqdr ð13Þ

with p ¼ k=m, and we obtain the abundance (10). Thus, the
condition that the abundance of p is greater than 1 is equivalent to
(8), as claimed.

For general n, completely analogously to the n ¼ 2 case, we
first partition each coordinate of the simplex Sn intom equal parts,

and use the corresponding roughly (asymptotically) ðn' 1Þ!mn'1

discrete strategies. We can use the pure strategy formulas (1), (2),
(5) for this problem, where each sum breaks into n' 1 sums,
corresponding to the n' 1 coordinates. Taking the limitm-1we
obtain (6), (7) and (10). Hence we conclude as before that the
condition for strategy p to be favored by selection is indeed (8).

3. Mixed games with two pure strategies

Consider the game between two strategies A and B. The payoff
matrix is given by

A B

A

B

a b

c d

! "
ð14Þ

In addition to the two pure strategies, we have mixed strategies
p ¼ ðp;1' pÞ where p is the probability to play strategy A and
1' p is the probability to play strategy B. The payoff of strategy p
against strategy q is given by (11)

Aðp;qÞ ¼ apqþ bpð1' qÞ þ cð1' pÞqþ dð1' pÞð1' qÞ ð15Þ

Then condition (6) that strategy p is favored by selection, in the
limit of low mutation, becomes

~Lp ¼
Z 1

0
ðp' qÞ½ða' b' c þ dÞðpþ qÞ þ 2ðb' dÞ)dq

¼ p2ða' b' c þ dÞ þ 2pðb' dÞ '
1
3
ðaþ 2b' c ' 2dÞ40 ð16Þ

For p ¼ ð0;1Þ, which is the pure strategy B, we obtain

aþ 2boc þ 2d ð17Þ

This condition is equivalent to rAo1=N, where rA is the fixation
probability of an Amutant in a population of B individuals (Nowak
et al., 2004; Ohtsuki et al., 2007; Imhof and Nowak, 2006; Lessard
and Ladret, 2007). The above condition can thus be interpreted as
follows: in a 2! 2 game with mixed strategies, pure strategy B is
favored if pure strategy A is not an advantageous mutant in a pure
B population, rAo1=N. It is the so-called ‘1/3-rule’: A is an
advantageous mutant when invading B if the fitness of A at a
frequency of 1/3 is greater than the fitness of B. By symmetry, for
p ¼ ð1;0Þ, which is the pure strategy A, (16) becomes
2aþ b42c þ d. This condition is equivalent to rBo1=N. Thus, in
a 2! 2 game with mixed strategies, A is favored if B is not an
advantageous mutant, rBo1=N.

Now we can ask when strategy A is better than strategy B. For
this we need to compare ~LA to ~LB; we conclude that A is favored
over B if and only if aþ b4c þ d. This is the usual risk-dominance
condition of strategy A over strategy B (Kandori et al., 1993;
Nowak, 2006; Antal et al., 2009a). Thus, adding mixed strategies
does not change the ranking of the two pure strategies. If
aþ b4c þ d then A is more abundant than B in the stationary
distribution of the mutation–selection process with or without

0 1

(i/m, 1-i/m) 
 0 i  m-1 

1/m

Fig. 1. Partition of the interval ½0;1) into segments of length 1=m.
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Best
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0
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Best
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1

Worst

p

Best

1

Worst

Best

p

0

1

0

Worst

p

Best

1
0

Worst

Best

p

a+d < b+c a+d > b+c

Fig. 2. Abundance density relative to its mean value, as a function of the probability p to play pure strategy 1. The first column corresponds to the case aþ dobþ c where
the parabola is concave. There are three possibilities: (a) the tip of the parabola is to the left of the interval ½0;1); (b) the tip is inside but only the right root is inside as well;
(c) the tip and both roots are inside; (d) the tip and the left root are inside; (e) the tip is to the right of the interval. The green segment shows which strategies are favored.
The green dot marks the best strategy. The second column corresponds to the case aþ d4bþ c where the parabola is convex.
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mixed strategies. This result will be generalized for games with n
pure strategies in Lemma 2.

Next we analyze the case of high mutation. Condition (7)
becomes

~Hp ¼ 1
4ð2p' 1Þðaþ b' c ' dÞ40 ð18Þ

As before, the condition that selection favors p ¼ ð1;0Þ, which is
the pure strategy A is

aþ b4c þ d ð19Þ

This is the usual condition for risk dominance of strategy A over
strategy B. By symmetry, the condition that pure strategy B is
favored by selection is aþ boc þ d, which is the usual risk-
dominance condition of B over A. Note that for high mutation,
adding mixed strategies does not change the selection conditions
for the pure strategies. This result will be generalized for games
with n pure strategies in Lemma 3. Moreover, for high mutation
rate, if aþ b4c þ d, then all strategies with p4 1

2 are favored. Thus,
if A is risk dominant over B, all mixed strategies that play A with
higher probability than B are favored. By symmetry, if B is risk-
dominant over A, i.e. aþ boc þ d, then strategies which are more
likely to play B (i.e. po 1

2) are favored.
Note that the lowmutation condition is a quadratic equation in

p. Hence, the best (or worst) strategy can be mixed. For high
mutation, the condition is linear in p. Hence one of the two pure
strategies is the best (most favored by selection) and the other
pure strategy is the worst. In general, for any mutation rate u, the
condition for strategy p ¼ ðp;1' pÞ to be favored by selection can
be deduced from (8) to be

p2ða' b' c þ dÞ þ 2p b' dþ
m
4
ðaþ b' c ' dÞ

h i

'
1
3
ðaþ 2b' c ' 2dÞ '

m
4
ðaþ b' c ' dÞ40 ð20Þ

This condition describes a parabola. The mixed strategy corre-
sponding to the tip of the parabola is p̂ ¼ ðp̂;1' p̂Þ where

p̂ ¼ '
b' dþ

m
4
ðaþ b' c ' dÞ

a' b' c þ d
ð21Þ

We are interested in the part of this parabola supported by the
interval ½0;1). Based on where p̂ is situated relative to the interval
½0;1) as well as on the sign of the coefficient of p2 in (20), the
relevant part of the parabola can have several shapes, as shown in
Fig. 2.

3.1. A rescaled payoff matrix

For a non-degenerate ðaadÞ payoff matrix (14), a4d can
always be achieved by renaming the strategies. Moreover, under
weak selection, adding an overall constant to all elements or
multiplying all elements by the same positive number does not
affect the dynamics; it only changes the intensity of selection d.
Hence we can define an equivalent payoff matrix (see also Antal et
al., 2009b)

1 a
1þ b 0

 !
ð22Þ

with only two parameters

a ¼
b' d
a' d

; b ¼
c ' a
a' d

ð23Þ

This means that each specific game given by numerical values in
(14) corresponds to a point in the ða;bÞ plane. A class of games
then corresponds to a particular region in this plane. In Fig. 3 we
show a few common games in the ða;bÞ plane. For example all

Prisoner’s Dilemma games belong to the second quarter plane
ao0, b40. In the Hawk–Dove game we first have to flip the Hawk
and the Dove strategies to obtain a matrix with a4d. Then the
corresponding region is 0oao1 and b40. Moreover, the
simplified Hawk–Dove game (26), which is the subject of the
next subsection, is given by a ¼ b=c and b ¼ 1' b=c. Hence, in
the ða;bÞ plane, the simplified Hawk–Dove game is given by the
line segment b ¼ 1' a, with 0oao1.

Now we present the same analysis as before for mixed
strategies in 2! 2 games using the simplified payoff matrix. For
any finite mutation rate, m, we have three different regions in the
ða;bÞ parameter space, as depicted in Fig. 4. The best strategy is

pure A forboa andboa m
mþ 4

pure B forb4aandb4amþ 4
m

mixed A and B forboamþ 4
m andb4a m

mþ 4
ð24Þ

In the mixed case the optimal value of p is given by

p̂ ¼
a

aþ b
þ
m
4
a' b
aþ b

ð25Þ

In the small mutation rate limit m-0, the mixed phase extends to
the quarter-plane a40, b40. For large mutation rates m-1,
however, the mixed phase disappears.

3.2. Example: Hawks and Doves

As an example, we consider the Hawk–Dove game (Maynard
Smith, 1982; Houston and McNamara, 1988, 1991; Mesterton-
Gibbons, 1994; Killingback and Doebeli, 1996; Nakamaru and
Sasaki, 2003), which is given by the payoff matrix

H D

H

D

b' c
2

b

0
b
2

0

BB@

1

CCA ð26Þ

The two strategies are hawk (H) and dove (D). While hawks
escalate fights, doves retreat when the opponent escalates. The
benefit of winning the fight is b. The cost of injury is c. We have

Fig. 3. Schematic phase diagram in the ða;bÞ plane. The four regions bounded by
black lines correspond to four different games. The dashed line corresponds to the
simplified Hawk–Dove game (26).
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0oboc. If two hawks meet, then the fight will escalate. One hawk
wins, while the other is injured. Since both hawks are equally
strong, the probability of winning or losing is 1

2. Hence, the
expected payoff for each of them is ðb' cÞ=2. If a hawk meets a
dove, the hawk wins and receives payoff b, while the dove retreats
and receives payoff 0. If two doves meet, there is no injury, but one
of them wins eventually. The expected payoff is b=2. Since boc,
neither strategy is a Nash equilibrium. If everyone else plays
hawk, then it is better to play dove and vice versa. Hence, hawks
and doves can coexist. At the stable equilibrium, the frequency of
hawks is given by b=c.

Next we consider mixed strategies that play hawk with
probability p and dove with probability 1' p. The strategy space
is given by the interval ½0;1). The pure strategies are p ¼ 0 (D) and
p ¼ 1 (H). The evolutionarily stable strategy (ESS) is given by the
mixed strategy that plays hawk with probability p+ ¼ b=c. No
other strategy can invade this ESS under deterministic evolu-
tionary dynamics.

We can now study the Hawk–Dove game with the methods
developed in the previous section. Using (20), we can write the
condition that the mixed strategy p ¼ ðp;1' pÞ is favored

'p2 þ p 2
b
c
þ m b

c
'
1
2

! "$ %
'

b
c
'
1
3

! "
'
m
2

b
c
'
1
2

! "
40 ð27Þ

The first observation is that the ESS p+ ¼ ðp+;1' p+Þ is always
favored. We can see this by substituting p+ into (27) and noting
that it is always positive. However, p+ is not always the best
strategy. In (27) the leading coefficient is 'co0; hence the
parabola is concave, as in Fig. 2(a–e). Thus, the best strategy is
either the tip of the parabola or one of the two pure strategies. The
tip of the parabola is given by

p̂ ¼ p+ 1þ
m
2

& '
'
m
4

ð28Þ

The best strategy is the same as the ESS when p̂ ¼ p+. From (28),
this happens when either m-0 or b=c ¼ 1

2. Otherwise, we can
compare the tip of the parabola to the ESS and we find that p̂4p+

if and only if b=c4 1
2, while p̂op+ if and only if b=co 1

2. Thus if the
ESS leans more towards one pure strategy, increasing the
mutation rate pushes the best strategy even closer towards that
pure strategy. An intuitive explanation is as follows. The mixed
ESS, p+, dominates every other strategy p, in the sense that
Aðp+; p+Þ ¼ Aðp; p+Þ but Aðp+; pÞ4Aðp; pÞ. Therefore it is intuitively
obvious that the mixed ESS is the best strategy for low mutation,
m-0. For high mutation, m-1, the best strategy must be one of
the pure strategies, because of the linearity of the payoff
functions. Thus for any positive mutation rate the best strategy
should be between the mixed ESS and one of the pure strategies.

We will now proceed with the analysis of the game. For low
mutation, m-0, the parabola looks like Fig. 2(b), (c) or (d). The
favored strategies always form a neighborhood around the best
strategy, p+ ¼ p̂. If b=co 1

3 then this neighborhood includes pure
dove, p ¼ 0. If 1

3ob=co 2
3 then this neighborhood includes neither

pure dove nor pure hawk. If 2
3ob=c then this neighborhood

includes pure hawk, p ¼ 1.
For high mutation, the condition for strategy p ¼ ðp;1' pÞ to

be favored is

p'
1
2

! "
b
c
'

1
2

! "
40 ð29Þ

Therefore, if b=co 1
2 then the best strategy is pure dove, p ¼ 0. If

1
2ob=c then the best strategy is pure hawk, p ¼ 1. The mixed ESS,
p+, is always favored but is never the best strategy.

When mutation is neither low nor high, we have a mixture of
the above two cases. All situations of Fig. 2(a–e) are possible. The
mixed ESS, p+, is always favored, but is never the best strategy,
unless b=c ¼ 1

2. The tip of the parabola, p̂, is given by (28).

(i) If b=com=ð2mþ 4Þ, then p̂o0, which means pure dove, p ¼ 0,
is the best strategy.

(ii) If m=ð2mþ 4Þob=coðmþ 4Þ=ð2mþ 4Þ, then 0op̂o1. In this
case, p̂ is the best strategy and the favored strategies form a
neighborhood around it. There are three cases: (i0) either pure
dove or (ii0) pure hawk or (iii0) neither of them are part of this
neighborhood.

(iii) If b=c4ðmþ 4Þ=ð2mþ 4Þ, then p̂41, which means pure hawk,
p ¼ 1, is the best strategy.

Note that lower b=c values favor pure doves, while higher b=c
values favor pure hawks. This makes sense, because b=c is the
ratio of the benefit gained from winning the fight over the cost of
possible injury. If this ratio is small, then it is better not to escalate
fights (which means to play dove). It is interesting to note that the
mixed ESS of classical game theory, p+, is always one of the
strategies that is favored by selection, but is never the best
strategy for any positive mutation rate m40.

These results agree with the general picture of Section 3.1. Note
that (after flipping the H and D strategies), the simplified
Hawk–Dove game (26) corresponds to the segment b ¼ 1' a,
with 0oao1 on the plane of Fig. 3. Then the region where mixed
strategies are favored is described by (24), and it can be seen on
Fig. 4.

In order to check the validity of our theory we have performed
simulations of our stochastic model. We measured the abundance
(density) in the stationary state for a Hawk–Dove game and
compared it to the theoretical asymptotic result of (10). In

Fig. 4. This phase diagram shows the type of the most abundant strategy in the ða;bÞ plane for some finite mutation rate m. It can be pure A, pure B, or a mixed stochastic
strategy. The angle of the boundary of the mixed region opens up symmetrically to 901 for m-0, and closes symmetrically to the line b ¼ a for m-1. In this last case, the
mixed region disappears.
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Fig. 5 we find good agreement between theory and simulations for
benefit b ¼ 2 and cost c ¼ 5. Note that the results are quite close
to the asymptotic limit already for N ¼ 10 and Nd ¼ 0:2.

4. Mixed games with n pure strategies

In this section we present a few results which characterize the
general behavior of pure strategies. We will compare the behavior
of pure strategies, k, in a pure n! n game with the behavior of
pure strategies, ek in a mixed n! n game. In an n! n game with
only pure strategies, the condition that strategy k is favored is
given by (1).

Lemma 1. In the limit of weak selection and low mutation in an
n! n game with mixed strategies, the condition that pure strategy ek
is favored is

~Lek ¼
1

nðnþ 1Þ

X

i

ððnþ 1Þakk þ ðnþ 1Þaki ' ðnþ 1Þaik ' aiiÞ '
X

i;j

aij

2

4

3

540

ð30Þ

The proof is by induction. From this lemma, it is immediate that
Li ' Lj ¼ ~Lei ' ~Lej . Hence, we can make the following statement.

Lemma 2. In the limit of weak selection and low mutation, the
relative ranking of pure strategies in a game with mixed strategies is
the same as that in a game with just the pure strategies. Hence,
adding mixed strategies does not change the relative ranking of the
pure strategies.

Proof. A direct proof for this statement is immediate. To find the
difference ~Lei ' ~Lej , one simply needs to integrate:
Z

Sn

Aðei; eiÞ þ Aðei;qÞ ' Aðq; eiÞ ' Aðej; ejÞ ' Aðej;qÞþAðq; ejÞdq ð31Þ

We note that: Aðei; eiÞ ¼ aii, Aðei;qÞ ¼
P

k qkaik and Aðq; eiÞ
¼
P

k qkaki, where qn ¼ 1' q1 ' & & & ' qn'1. All these functions
are linear and hence easily integrable over the simplex Sn. For
example, we have

R
Sn
qi ¼

ffiffiffi
n

p
=n!. &

Lemma 3. In the limit of weak selection and high mutation we have

Hk ¼ ~Hek ¼
1
n

X

j

ak;j '
1
n2

X

i;j

ai;j ð32Þ

Hence, the condition for a pure strategy k to be favored in a mixed
game is the same as in the pure game.

The proof is again immediate by induction. Note that this
lemma is stronger than Lemma 2. In the high mutation case, the
conditions that the pure strategies are favored are exactly the
same for both the mixed and the pure game. In the low mutation
case, only the relative behavior of the pure strategies is the same
between the two cases. The actual conditions for selection are
different between the mixed game and the pure game.

Finally, for any mutation, the condition for a strategy to be
selected is a linear combination between the low mutation and
high mutation behaviors. Hence, combining the results in Lemmas
2 and 3 we conclude that:

Lemma 4. In the limit of weak selection, for any mutation rate, the
relative ranking of the pure strategies is not affected by the addition
of mixed strategies.

5. Conclusion

We have presented a method to study games with mixed
strategies in finite sized populations under stochastic evolution-
ary dynamics. We assume that individuals reproduce at a rate that
is proportional to the payoff earned in the game. Reproduction is
subject to mutation. We characterize the average abundance of
each mixed strategy in the mutation–selection equilibrium.
Strategies that are favored by selection are more abundant than
average. Strategies that are opposed by selection are less
abundant than average. If strategy A is more abundant than
strategy B in the mutation–selection equilibrium, thenwe say that
A is favored over B.

Our results allow a simple and straightforward characteriza-
tion of games with mixed strategies. The crucial condition for low
mutation rate (6) is based on averaging over all pairwise
comparisons. The crucial condition for high mutation rate (7) is
based on evaluating the fitness of each strategy at the point where
all strategies are equally abundant. Intriguingly, the condition for
any mutation rate is simply a linear combination of the conditions
for low and high mutation rates. We have no intuitive explanation
why this condition is linear in the mutation rates.

Although our results provide interesting new insights into
evolutionary game dynamics, our approach has limitations. (i) We
can only consider the case of weak selection. This means the
fitness of an individual is 1þ d& payoff where d is small. One way
to interpret weak selection is to say that the game under
consideration provides only a small contribution to overall fitness.
Another way to explain weak selection is the following: when
choosing to update their strategies, players make random choices
that are weakly affected by payoff; this means players do not
really know what is going on. Both of these aspects are fairly
realistic and should apply in many situations. Hence weak
selection is an important case to be studied. (ii) We consider
only global mutation. A new mutant is picked at random from a
uniform distribution of the strategy space, which is given by the
simplex Sn. The location of the mutant in strategy space does not
depend on the parent. (iii) We calculate the average abundance of
each mixed strategy in the stationary distribution of the
mutation–selection process, but we do not in fact calculate the
stationary distribution over the entire state space. Our stochastic
process has state space SNn : for each of the N players we must
specify which strategy (in Sn) is being used. Instead of calculating
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Fig. 5. Abundance density ~x in a Hawk–Dove game (26) with benefit b ¼ 2 and
cost c ¼ 5, as a function of the probability p of playing Hawk. Here we compare the
theoretical curve (solid line) of (10) to simulation results (symbols). The
parameters in the simulation are N ¼ 10, u ¼ 0:1, and d ¼ 0:01;0:02, which
correspond to m ¼ 1 and Nd ¼ 0:1;0:2. The tip of the parabola, that is the most
favored strategy, is at p̂ ¼7/20 for both curves according to (28).
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the stationary distribution over SNn , we calculate the average
abundance of each mixed strategy. With this method though, we
are able to decide whether a strategy is favored or not by selection
in the stationary state.
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