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a b s t r a c t

In evolutionary games the fitness of individuals is not constant but depends on the relative abundance
of the various strategies in the population. Here we study general games among n strategies in
populations of large but finite size. We explore stochastic evolutionary dynamics under weak selection,
but for any mutation rate. We analyze the frequency dependent Moran process in well-mixed
populations, but almost identical results are found for the Wright–Fisher and Pairwise Comparison
processes. Surprisingly simple conditions specify whether a strategy is more abundant on average than
1=n, or than another strategy, in the mutation-selection equilibrium. We find one condition that holds
for low mutation rate and another condition that holds for high mutation rate. A linear combination of
these two conditions holds for any mutation rate. Our results allow a complete characterization of n! n
games in the limit of weak selection.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary game theory is the study of frequency dependent
selection (Maynard Smith and Price, 1973; Maynard Smith, 1982;
Hofbauer and Sigmund, 1998, 2003; Nowak and Sigmund, 2004).
The individuals of a population can adopt one of several strategies,
which can be seen as genotypes or phenotypes. The payoff for
each strategy is a linear function of the relative frequencies of all
strategies. The coefficients of this linear function are the entries of
the payoff matrix. Payoff is interpreted as fitness: individuals
reproduce at rates that are proportional to their payoff. Reproduc-
tion can be genetic or cultural.

Evolutionary game theory provides a theoretical foundation for
understanding human and animal behavior (Schelling, 1980;
Maynard Smith, 1982; Fudenberg and Tirole, 1991; Binmore,
1994; Aumann and Maschler, 1995; Samuelson, 1997). Applications
of evolutionary game theory include games among viruses (Turner
and Chao, 1999, 2003) and bacteria (Kerr et al., 2002) as well as
host–parasite interactions (Nowak and May, 1994). Cellular inter-
actions within the human body can also be evolutionary games. As
an example we mention the combat between the immune system
and virus infected cells (Nowak et al., 1991; May and Nowak, 1995;
Bonhoeffer and Nowak, 1995). The ubiquity of evolutionary game

dynamics is not surprising, because evolutionary game theory
provides a fairly general approach to evolutionary dynamics
(Nowak, 2006). There is also an equivalence between fundamental
equations of ecology (May, 1973) and those of evolutionary game
theory (Hofbauer and Sigmund, 1998).

Let us consider a game with n strategies. The payoff values are
given by the n! n payoff matrix A ¼ ½aij$. This means that an
individual using strategy i receives payoff aij when interacting
with an individual that uses strategy j. For understanding a game
it is useful to explore whether any of the strategies are Nash
equilibria (Nash, 1950; Maynard Smith, 1982; Taylor and Jonker,
1978; Cressman, 1992). Strategy k is a strict Nash equilibrium if
akk4aik for all iak. Strategy k is a Nash equilibrium if akkXaik for
all i. Another useful concept is that of an evolutionarily stable
strategy (ESS) (Maynard Smith and Price, 1973; Maynard Smith,
1982, 1974). Strategy k is ESS if either (i) akk4aik or (ii) akk ¼ aik
and aki4aii holds for all iak. We have the following implications:
if k is a strict Nash equilibrium then it is an ESS; if k is an ESS
then it is a Nash equilibrium. Both Nash and ESS, however,
give conditions on whether a strategy, which is played by the
majority of players, outperforms all other strategies. Hence they
identify the ‘favored’ strategy based on its performance at large
frequencies.

The traditional approach to evolutionary game dynamics uses
well-mixed populations of infinite size. In this case, the determi-
nistic selection dynamics can be described by the replicator
equation, which is an ordinary differential equation defined on the
simplex Sn (Taylor and Jonker, 1978; Weibull, 1995). Many
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interesting properties of this equation are described in the book
by Hofbauer and Sigmund (1998).

More recently there have been efforts to study evolutionary
game dynamics in populations of finite size (Riley, 1979; Schaffer,
1988; Kandori et al., 1993; Kandori and Rob, 1995; Fogel et al.,
1998; Ficici and Pollack, 2000; Schreiber, 2001; Nowak et al.,
2004; Taylor et al., 2004; Wild and Taylor, 2004; Traulsen
et al., 2005). For finite populations a stochastic description is
necessary. Of particular interest is the fixation probability of a
strategy (Nowak et al., 2004; Antal and Scheuring, 2006; Lessard
and Ladret, 2007): the probability that a single mutant strategy
overtakes a homogeneous population which uses another strat-
egy. When only two strategies are involved, the strategy with
higher fixation probability is considered to be more ‘favored’ by
selection. We can take a game of n strategies and analyze all
pairwise fixation probabilities to find which strategies are favored
by selection (Imhof and Nowak, 2006). This concept, in some way,
compares strategies at all relative frequencies during the fixation
process, as opposed to the Nash and ESS conditions.

The study of fixation probabilities, however, is only conclusive
for small mutation rates, which means most of the time all players
use the same strategy. In this paper, we propose a more general
way of identifying the strategy most favored by selection: it is the
strategy with the highest average frequency in the long time
average. For brevity we call throughout this paper the average
frequency of a strategy in the stationary state its abundance. The
criteria for higher abundance can be used for arbitrary mutation
rates. Moreover, for small mutation rates this criteria can be
formulated in terms of pairwise fixationprobabilities.

In particular, we focus on stochastic evolutionary dynamics in
populations of finite size N, although for simplicity we shall
consider the large (but still finite) population size limit. Evolu-
tionary updating occurs according to the frequency dependent
Moran process (Nowak et al., 2004; Taylor et al., 2004), but the
Wright–Fisher (W–F) process (Imhof and Nowak, 2006) and the
Pairwise Comparison process (Szabó and T +oke, 1998; Traulsen et
al., 2007) are also discussed; the details of these processes are
explained in the next sections. In addition, we assume that
individuals reproduce proportional to their payoffs but subject to
mutation with probability u40. With probability 1% u the
imitator (or offspring) adopts the strategy of the teacher (or
parent); with probability u one of the n strategies is chosen at
random.

We study the case of weak selection. For the frequency
dependent Moran process, the payoff of strategy i is given by
f i ¼ 1þ dpi, which is the baseline payoff, 1, plus the payoff pi of
strategy i obtained in the games, weighted by the intensity of
selection dX0. Weak selection means d51=N. In this case,
although the frequencies of the strategies can widely fluctuate
in time, all strategies have approximately the same abundance
(average frequency), 1=n, in the stationary distribution of the
mutation-selection process. We are interested in the deviation
from this uniform distribution. To calculate this deviation we use
a perturbation theory in the selection strength, d. Here we follow
the methods developed in Antal et al. (2008) for studying two
strategies in a phenotype space. Perturbation studies can also be
found in Rousset (2004) for subdivided populations.

In this paper, we study n-strategy games in a well-mixed
population of N players. We consider that selection favors a
strategy if its abundance (average frequency) exceeds 1=n.
Conversely, selection opposes a strategy, if its abundance is less
than 1=n. We establish the following results. For low mutation
probability (u51=N), we find that selection favors strategy k if

Lk ¼
1
n

Xn

i¼1

ðakk þ aki % aik % aiiÞ40. (1)

For high mutation probability (ub1=N), selection favors strategy
k if

Hk ¼
1
n2

Xn

i¼1

Xn

j¼1

ðakj % aijÞ40. (2)

For arbitrary mutation probability the general expression for
selection to favor strategy k is
Lk þ NuHk40. (3)

Strategy k is more abundant than strategy j if
Lk þ NuHk4Lj þ NuHj. (4)

All these results hold for large but finite population size,
15N51=d. They allow a complete characterization of n! n games
in the limit of weak selection. The equilibrium frequencies of each
strategy are also given in the paper.

We can gain some qualitative understanding of our low (1) and
high (2) mutation rate results. For low mutation rates, most of the
time, all players use the same strategy until another strategy takes
over. There are only two strategies involved in a takeover. A single
k-player fixates in all i-players with a higher probability than a
single i-player into k-players, if akk þ aki % aik % aii40 (Nowak,
2006). For only two strategies present, a higher fixation
probability for k means that it is more abundant. Hence strategy
k is the most abundant among all strategies if it fixates well
against all strategies, which then explains expression (1).
Conversely, for high mutation rates the frequencies of all
strategies are close to 1=n all the time. Hence the payoff of
strategy k is roughly f k ¼ 1þ ðd=nÞ

P
j¼1akj. One has to compare

this payoff to the average payoff of the population ð1=nÞ
P

if i,
which leads to expression (2).

The rest of the paper is structured as follows. In Section 2, we
derive the general conditions for strategy abundance for any
mutation rates. Section 3 provides three concrete examples.
Possible extensions of our method to strong selection, more
general mutation rates, the W–F and the Pairwise Comparison
processes are discussed in Section 4. We summarize our results in
Section 5.

2. Perturbation method

Let us consider a well-mixed population of N players. Each of
them plays one of the nX2 strategies. The state of the system is
described by the n-dimensional column vector X, where Xi is the
number of players using strategy i. The frequencies of strategies
are x ¼ X=N. The payoff matrix is given by the n! n matrix
A ¼ ½aij$, where aij is the payoff of an i-player playing against
a j-player. The payoff of an individual using strategy i is f i, and the
column vector f is given by f ¼ 1þ dAx. Here dX0 is the selection
strength, and 1i ¼ 1 (for all i) is the baseline payoff. The term
AX=N ¼ Ax in the player’s payoff stands for the average contribu-
tion from all other players through the game. We included self
interaction here, since it does not make a difference in the
large N limit. The total payoff of the whole population is
F ¼ XT f ¼ Nð1þ dxTAxÞ. We assume weak selection throughout
this paper, by which we mean that dN51. The need for such weak
selection (as opposed to d51) shall become clear at the end of this
section.

The dynamics of the system is given by the frequency
dependent Moran process. In each time step a randomly chosen
individual is replaced by a copy of an individual chosen with
probability proportional to its payoff. The offspring inherits the
parent’s strategy with probability 1% u, or adopts a random
strategy with probability u40.

We shall show below that the condition for strategy k to be
more abundant than the average 1=n is equivalent to having a
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positive average change of its frequency during a single update
step. Hence we start deriving this latter quantity. In state X, the
average number of offspring (fitness) of a k-player due to selection
is ok ¼ 1% 1=N þ f k=F. We also included the parent among the
offspring, which explains the leading one on the right hand side.
The term %1=N describes its random death, while the term f k=F
stands for the proliferation proportional to payoff. For d ! 0, the
fitness can be written as

ok ¼ 1þ dN%1½ðAxÞk % xTAx$ þOðd2N%1Þ. (5)

In one update step, the frequency of k-players changes on average
due to selection by

Dxselk ¼ xkok % xk ¼ dDxð1Þk ½1þ OðdÞ$, (6)

where the first derivative with respect to d is

Dxð1Þk ¼ N%1xk½ðAxÞk % xTAx$. (7)

The state of the system, X, changes over time due to selection and
mutation. In the stationary state of the Moran process we find the
system in state X with probability PdðXÞ. This stationary
probability distribution is the eigenvector with the largest
eigenvalue of the stochastic transition matrix of the system (van
Kampen, 1997). The elements of the transition matrix depend on d
only through f ¼ 1þOðdÞ. Note that there is no N dependence in
the correction term, since both A and x are independent of N.
Consequently, the stationary probabilities are continuous at d ¼ 0,
and we canwrite them as PdðXÞ ¼ Pd¼0ðXÞ½1þ OðdÞ$ for any state X.

Hence by averaging Dxselk in the stationary state, in the leading
order in d we obtain

hDxselk id )
X

X

Dxselk PdðXÞ ¼ d
X

X

Dxð1Þk Pd¼0ðXÞ ! ½1þOðdÞ$. (8)

Thus, we can describe the stationary state of the system for small
d by using the stationary distribution in the absence of selection,
d ¼ 0. Since the correction term is independent of N, the above
formula remains valid even in the large population size limit.
Using expression (7) for Dxð1Þk , the average change due to selection
in the leading order can be written as

hDxselk id ¼ dN%1hxk½ðAxÞk % xTAx$i

¼ dN%1
X

j

akjhxkxji%
X

i;j

aijhxkxixji

0

@

1

A, (9)

where h*i denotes the average in the neutral stationary state
(d ¼ 0).

So far we have only considered selection. By taking into
account mutation as well, the expected total change of frequency
in state X during one update step can be written as

Dxtotk ¼ Dxselk ð1% uÞ þ
u
N

1
n
% xk

! "
. (10)

The first term on the right hand side describes the change in the
absence of mutation, which happens with probability 1% u. The
second term stands for the change due to mutation, which
happens with probability u. In this latter case the frequency xk
increases by 1=nN due to the introduction of a random type, and
decreases by xk=N due to random death. In the stationary state the
average total change of the frequency is zero, hDxtotk id ¼ 0, that is
selection and mutation are in balance. Hence by averaging (10) we
obtain the abundance (average frequency) in the stationary state
expressed by the average change due to selection as

hxkid ¼
1
n
þ N

1% u
u

hDxselk id. (11)

We emphasize that this relationship is valid at any intensity of
selection, although we are going to use it only in the weak

selection limit. From (11) it follows that the condition hxkid41=n
is in fact equivalent to

hDxselk id40. (12)

That is, for strategy k to be more abundant than the average, the
change due to selection must be positive in the stationary state.
Hence, as we claimed, instead of computing the mean frequency,
we can now concentrate on the average change (9) during a single
update step.

To evaluate (9) we need to calculate averages of the form hxkxji
and hxkxixji. Since in the neutral stationary state all players are
equivalent, exchanging indexes does not affect the averages. For
example hx1x1i ¼ hx3x3i, and hx1x2x2i ¼ hx1x3x3i. By taking into
account these symmetries, only six different averages appear
in (9)

hx1i ¼ hxii,
hx1x1i ¼ hxixii,
hx1x2i ¼ hxixji,
hx1x1x1i ¼h xixixii,
hx1x2x2i ¼h xixjxji,
hx1x2x3i ¼h xixjxki (13)

for all kaiajak. Eq. (9) then takes the form

Nd%1hDxselk id ¼ hx1x1iakk þ hx1x2i
X

i;iak

aki % hx1x1x1iakk

% hx1x2x2i
X

i;iak

ðaki þ aii þ aikÞ

% hx1x2x3i
X

i;j
kaiajak

aij. (14)

Note that hx1x2x3i is not defined for n ¼ 2, but in that case the last
sum in (14) is zero anyway. Hence the following derivation is valid
even for n ¼ 2. By removing the restrictions from the summations
in (14), we can rearrange this expression into

Nd%1hDxselk id ¼ akkðhx1x1i% hx1x2i% hx1x1x1iþ 3hx1x2x2i% 2hx1x2x3iÞ

þ hx1x2i
X

i

aki þ ðhx1x2x3i% hx1x2x2iÞ

!
X

i

ðaki þ aii þ aikÞ % hx1x2x3i
X

i;j

aij. (15)

Let us now interpret these average quantities. We draw j-players
at random from the population in the neutral stationary state,
and define sj as the probability that all of them have the same
strategy. We have hx1i ¼ n%1 because under neutrality a player
has 1=n chance of having strategy one out of n possibilities.
Moreover, we have hx1x1i ¼ s2n%1, because the first player has
strategy one with probability 1=n and the second player
uses the same strategy with probability s2. Similarly hx1x1x1i ¼
s3n%1 holds. The remaining averages that appear in (15) can be
written as

hx1x2i ¼ 1%
X

2pipn

xi

 !
x2

* +
¼ hx1i%h x1x1i% ðn% 2Þhx1x2i,

hx1x2x2i ¼ 1%
X

2pipn

xi

 !

x2x2

* +

¼ hx1x1i%h x1x1x1i%ð n% 2Þhx1x2x2i,

hx1x2x3i ¼ 1%
X

2pipn

xi

 !
x2x3

* +

¼ hx1x2i% 2hx1x2x2i% ðn% 3Þhx1x2x3i,

where we used the normalization condition
P

ixi ¼ 1, and the
symmetry relations (13). Thus, we can express all the averages
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in (13) in terms of only two probabilities, s2 and s3

hx1i ¼
1
n
,

hx1x1i ¼
s2
n
,

hx1x2i ¼
1% s2
nðn% 1Þ

,

hx1x1x1i ¼
s3
n
,

hx1x2x2i ¼
s2 % s3
nðn% 1Þ

,

hx1x2x3i ¼
1% 3s2 þ 2s3
nðn% 1Þðn% 2Þ

. (16)

We note again that for n ¼ 2 the last expression is ill defined, but
it is not needed in that case.

Up to this point everything was calculated for finite N.
Although further discussion for finite N is possible, it becomes
quite unwieldy; hence, for simplicity we consider only the large N
limit from here on. In Appendix Awe calculate the values of s2 and
s3 for Nb1, which are given by (A.3) and (A.7), respectively. By
substituting these expressions into (16) we arrive at

hx1x1i ¼ nð2þ mÞðnþ mÞC,
hx1x2i ¼ mð2þ mÞnC,
hx1x1x1i ¼ ðnþ mÞð2nþ mÞC,
hx1x2x2i ¼ mðnþ mÞC,
hx1x2x3i ¼ m2C, (17)

where C ¼ ½Nn3ð1þ mÞð2þ mÞ$%1 and m ¼ Nu is the rescaled
mutation rate. With these correlations, (15) takes the form

hDxselk id
Cd

¼ mn2akk þ mð2þ mÞn
X

i

aki

% mn
X

i

ðaki þ aii þ aikÞ % m2
X

i;j

aij,

where rearranging the terms leads to

hDxselk id
Cd

¼ m2 n
X

i

aki %
X

i;j

aij

0

@

1

Aþ mn
X

i

ðakk þ aki % aik % aiiÞ.

By defining

Lk ¼
1
n

X

i

ðakk þ aki % aik % aiiÞ,

Hk ¼
1
n2

X

i;j

ðaki % aijÞ, (18)

we finally arrive at our main result

hDxselk id ¼
dmðLk þ mHkÞ

nNð1þ mÞð2þ mÞ . (19)

This expression is valid in the limit of large population size Nb1,
for weak selection Nd51, with m ¼ Nu being constant. Condition
(12) for strategy k to be more abundant than the average 1=n is
simply Lk þ mHk40 as we already announced in (3). In the low
mutation limit (m! 0) the condition for abundance becomes
Lk40, while in the high mutation limit (m ! 1) it is Hk40. As a
consequence of (11), strategy k is more abundant than strategy j if
Lk þ mHk4Lj þ mHj. Note that any finite mutation probability u
corresponds to the high mutation rate limit m! 1 for our N ! 1
limit.

By substituting (19) into (11) we obtain the abundances
(average frequencies) in the weak selection stationary state

hxkid ¼
1
n

1þ dNð1% uÞ
Lk þ NuHk

ð1þ NuÞð2þ NuÞ

# $
. (20)

This expression becomes exact in the N ! 1, Nd ! 0 limit, if
Nu ¼ m is kept constant. It becomes clear at this point, that
although we only used d51 to derive (19), we actually need
dN51 to have frequencies close to 1=n in (20).

2.1. Special case: two strategies

For only two strategies (n ¼ 2) the general formula (19) leads
to

hDxsel1 id ¼
du

8ð1þ NuÞ
ða11 þ a12 % a21 % a22Þ. (21)

The peculiarity of the two strategy case is that the condition for
higher abundance (mean frequency) (12) of strategy one

a11 þ a12 % a21 % a2240 (22)

does not depend on the mutation probability u. It has been shown
in Antal et al. (2009) that very similar conditions hold for finite
population size. With self interaction we obtain the same result,
but when self interaction is excluded, the condition becomes

ða11 þ a12 % a21 % a22ÞN % 2a11 þ 2a2240. (23)

This condition does not depend on the mutation probability u
either. Moreover, the above conditions are also valid for arbitrary
strength of selection for a general class of models, in particular for
the Moran model with exponential payoff functions or for the
Pairwise Comparison process (Antal et al., 2009). Note that this
law is well known for several models in the low mutation rate limit
(Kandori et al., 1993; Nowak et al., 2004).

2.2. Low mutation rates

There is an intimate relationship between our conditions for
high abundance and fixation probabilities for low mutation rates
m51. In this limit, most of the time all players follow the same
strategy, and rarely a single mutant takes over the entire
homogeneous population (fixates). During fixation only two
types of players are present. The fixation probability rij is the
probability that a single i-player overtakes a population of
j-players. Hence we have effectively n states of pure strategies,
where a state of pure strategy j changes to a state of pure strategy i
at rate mrij=n.

Let us first consider n ¼ 2 strategy games, where we label the
two strategies as k and i. In the stationary state there are rare
transitions between pure k-player and pure i-player states, and
hxkirik ¼ hxiirki with hxkiþ hxii ¼ 1. Hence we can write

hxki ¼
1
2

1þ
N
2
ðrki % rikÞ

# $
(24)

since all fixation probabilities are 1=N in the leading order of d. On
the other hand, the abundance (20) for two strategies and low
mutations becomes

hxki ¼
1
2

1þ
N
2
dLk

! "
(25)

Consequently, we can express dLk as

d
2
ðakk þ aki % aik % aiiÞ ¼ rki % rik. (26)

This equality can also be derived independently from the exact
expression of the fixation probability (Nowak et al., 2004)

rki ¼
1
N

1þ
dN
6

ðakk þ 2aki % aik % 2aiiÞ
# $

. (27)

For n strategies, by using (1) and (26), we can express Lk
with pairwise fixation probabilities as Lk ¼ ð2=dnÞ

P
irki % rik.
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The condition Lk40 for strategy k to be more abundant than 1=n
can be written as
X

i

rki4
X

i

rik. (28)

This condition can be interpreted as follows. Strategy k is more
abundant than 1=n in the low mutation rate limit if the average
fixation probability of a single k-player into other pure strategy
states is larger than the average fixation probability of other
strategies into a pure strategy k population. For these averages we
take all strategies with the same weights.

3. Examples

Here we provide three applications of our results for three
strategy games. First in Section 3.1 we study the effect of
loners on cooperators and defectors. Then in Section 3.2 we
show how mutation alone can make a strategy more abundant.
Finally, in Section 3.3 we study the repeated Prisoner’s Dilemma
game.

3.1. Cooperators, defectors, loners

To see the difference between our weak selection and a
traditional game-theoretic approach, let us consider the following
example. We start with a Prisoner Dilemma game between
cooperators (C) and defectors (D), given by the payoff matrix

C

D

C D

10 1

11 2

! "
:

(29)

Clearly, defectors dominate cooperators, so we expect that
defectors are more abundant in a stationary state. Indeed, from
condition (22) we obtain

a11 þ a12 % a21 % a22 ¼ %2o0. (30)

Thus strategy D is more abundant than C for any mutation rate.
Surprisingly, the introduction of loners (L), which do not

participate in the game (Hauert et al., 2002), can dramatically
change the balance between C and D. Consider the following
game:

C

D

L

C D L

10 1 0

11 2 0

0 0 0

0

B@

1

CA . (31)

Loners are dominated by cooperators and defectors. Elimination of
the dominated strategy L leads to a game between C and D, in
which D is winning. Thus, standard game theoretic arguments
predict that strategy D is the most abundant. However, these
arguments fail for weak selection, where it is not enough to know
that a strategy dominates another, but also how strong this
dominance is. In pairwise interactions, the advantage of C over L
is significantly larger than that of D over L as can be seen from
the matrices:

C

L

C L

10 0

0 0

! "
D

L

D L

2 0

0 0

! "
. (32)

This advantage of C can overcompensate the disadvantage it has
against D, therefore the abundance of C can be the highest.

Indeed, the relevant quantities for low mutation rates are

LC ¼ 8
3; LD ¼ 4

3; and LL ¼ %4. (33)

Thus, both C and D have larger abundance than the neutral value
1
3. But since LC4LD, strategy C has the highest abundance. The
introduction of loners causes the reversal of abundance between
C and D when the mutation rates are small. In other words we
can say the loners favor cooperators.

For high mutation rates the relevant quantities are

HC ¼ 1; HD ¼ 5
3; and HL ¼ %8

3. (34)

Hence, according to (3), both C and D have an abundance larger
than 1

3 for any mutation rate. For high mutation rates, however,
since HCoHD, strategy D becomes the most abundant. In fact, C
is the most abundant for mom+ ) 2, but it is D for m4m+.

3.2. Reversing the ranking of strategies by mutation

As a second example, we address the game

S1
S2
S3

S1 S2 S3

1 0 13

0 l 8

0 7 9

0

B@

1

CA
, (35)

where l is a free parameter. For lo7, S2 is dominated by S3.
Moreover, S1 dominates S3, and S1 and S2 are bistable. Thus,
classical game theoretic analysis shows that for lo7, all players
should choose S1. It turns out that this state is also the only stable
fixed point of the replicator equation for lo7.

However, the above reasoning does not apply for weak
selection. The relevant quantities for low mutation rates are

L1 ¼
6% l
3

; L2 ¼
2l% 9

3
; and L3 ¼

3% l
3

, (36)

and for high mutation rates they are

H1 ¼
4% l
9

; H2 ¼
2l% 14

9
; and H3 ¼

10% l
9

. (37)

Thus, we expect thresholds where the abundance of a strategy
crosses 1

3 at l ¼ 3, 4.5, and 6 for small mutation rates and at l ¼ 4,
7, and 10 for high mutation rates. For each mutation rate and each
value of l, our conditions determine the order of strategies. Fig. 1
shows the change of these thresholds with the mutation rate.
There are six possibilities for ordering of these three strategies. In
each of these cases, there can be one or two strategies with an
abundance larger than 1

3. Therefore, there are 12 ways for ordering
the strategies relative to 1

3. In this concrete example, all of these 12
regions can be obtained by varying the parameter l and the
mutation rate m. For example if we fix l ¼ 4:6, just by changing
the rescaled mutation rate, we obtain six different orderings of the
strategies relative to 1

3, as one can see in Fig. 1.
In order to verify our results we performed simulations of the

Moran model with the payoff matrix (35), at l ¼ 4:6. In Fig. 2, we
compare the simulated frequencies of strategies to the theoretical
frequencies given by (20). The theory becomes exact in the
N ! 1, Nd ! 0, and m ¼ Nu constant limit. As shown in Fig. 2,
already at N ¼ 30, and d ¼ 0:003, which corresponds to Nd ¼ 0:09,
we find an excellent agreement with the theory.

3.3. Cooperators, defectors, and tit-for-tat

As a third example, we discuss the interaction of ‘always
cooperate’ (AllC), ‘always defect’ (AllD), and ‘tit-for-tat’ (TFT)
strategies in the repeated Prisoner’s Dilemma game (Nowak and
Sigmund, 1989; Imhof et al., 2005). Each pair of players playsmX2
rounds. TFT follows its opponent strategy in the previous round,
but cooperates in the first round. Acting as a cooperator costs c for
a player, but one gets benefit b from playing with a cooperator.
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Hence, the payoff matrix is given by

AllC

AllD

TFT

AllC AllD TFT

ðb% cÞm %cm ðb% cÞm
bm 0 b

ðb% cÞm %c ðb% cÞm

0

B@

1

CA . (38)

For low mutation rates, the relevant quantities are

LAllC ¼ %
2cm
3

,

LAllD ¼
%bðm% 1Þ þ cð3mþ 1Þ

3
,

LTFT ¼
bðm% 1Þ % cðmþ 1Þ

3
. (39)

The most apparent consequence is that for low mutation rates
cooperators never exceed the abundance of 1

3. This is not

surprising, since AllC is a fairly dull strategy: the mean AllD and
the cleverer TFT is expected to perform better. As we increase
the benefit to cost ratio b=c, the order of abundance of these
strategies change at several particular values. For b=coðmþ 1Þ=
ðm% 1Þ, only the abundance of AllD is larger than 1

3. For
ðmþ 1Þ=ðm% 1Þob=coð2mþ 1Þ=ðm% 1Þ, the abundance of both
AllD and TFT is above 1

3, with AllD still dominating TFT. For
b=c4ð2mþ 1Þ=ðm% 1Þ TFT becomes more abundant than AllD, for
b=c4ð3mþ 1=ðm% 1Þ the abundance of AllD drops below 1

3, and
for b=c4ð5mþ 1Þ=ðm% 1Þ, it is even smaller than the abundance
of AllC.

For high mutation rates, the relevant quantities are

HAllC ¼
bðm% 1Þ % cð4m% 1Þ

9
,

HAllD ¼
%2bðm% 1Þ þ cð5mþ 1Þ

9
,

HTFT ¼
bðm% 1Þ % cðmþ 2Þ

9
. (40)

Surprisingly, now the abundance of AllC can exceed 1
3 for high

mutation rates. Again, as we increase the benefit to cost ratio b=c,
the abundances change order at particular b=c values, which
values are different for the high and low mutation rate limits. For
high mutation rates, when b=coðmþ 2Þ=ðm% 1Þ, only the abun-
dance of AllD exceeds 1

3. For ðmþ 2Þ=ðm% 1Þob=coð2mþ 1Þ=
ðm% 1Þ, also the abundance of TFT is larger than 1

3, but does not
exceed the abundance of AllD. For ð2mþ 1Þ=ðm% 1Þob=
coð5mþ 1Þ=2ðm% 1Þ, AllD is less abundant than TFT. At b=c ¼
ð5mþ 1Þ=2ðm% 1Þ, the abundance of AllD drops below 1

3 and it
becomes identical to the abundance of AllC at b=c ¼ 3m=ðm% 1Þ.
Finally, for b=c4ð4m% 1Þ=ðm% 1Þ, even the abundance of AllC
exceeds 1

3, but it always remains below the abundance of TFT. The
relations between the strategies and these thresholds are depicted
in Fig. 3.

The most interesting region is b=c4ð4m% 1Þ=ðm% 1Þ, where
the abundance of AllC exceeds 1

3 (the yellow region in Fig. 3b). This
is not possible for lowmutation rates. High mutation rates and the
TFT strategy can facilitate AllC to increase its abundance above
average.

4. Outlook

In this section, we discuss possible extensions and limitations
of our method. First in Section 4.1 we address the strong selection
limit. Then in Section 4.2 we consider more general mutation
rates. Finally, in Section 4.3 two alternative dynamics are studied.

4.1. Strong selection

Can we say something without the weak selection assump-
tion? As we mentioned in Section 2.2, for only two strategies
condition (19) is valid for any intensity of selection in a wide class
of models (Antal et al., 2009). We can also argue that our
condition (2) is valid for very high mutation probabilities, namely
for u ! 1, for arbitrary strength of selection. In this case players
pick random strategies most of the time, hence the frequencies of
all strategies are close to 1=n. This implies that the payoff of a k-
player is approximately f k ¼ ð1=nÞ

P
iaki, while the total payoff of

the whole population is F ¼ ð1=nÞ2
P

i;jaij. Strategy k performs
better than average when f k4F, which is indeed our general
condition for large mutation rates (2). Since the system is almost
neutral due to high mutation, we hardly need to assume anything
about the dynamics. Note that u ! 1 implies a stronger mutation
rate than m ! 1, since the latter corresponds to any fixed
mutation probability u in the N ! 1 limit.
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Fig. 1. Strategy abundance (mean frequency) in the game given by the payoff
matrix (35). Colored lines show the critical conditions under which one of the
three strategies exceeds an abundance of 1

3. For small mutation rates, S1 is favored
over S3, but for large mutation rate, S3 is favored over S1. All three strategies have
equal abundance at the intersection of all boundaries. (For interpretation of the
references to colors in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 2. Simulation results for strategy abundances as a function of the rescaled
mutation rate m ¼ Nu in the game of payoff matrix (35), at l ¼ 4:6. The population
size is N ¼ 30 and the selection strength is d ¼ 0:003, which means Nd ¼ 0:09. The
solid lines are the theoretical curves given by (20), and the dotted line marks the
average abundance 1

3. The intersections of the lines are located at the critical values
given by (3) and (4). The highest possible value of the mutation rate at this system
size is m ¼ 30, which corresponds to mutation probability u ¼ 1, where all
densities are equal.
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The situation is more complex in the low mutation rate limit
for arbitrary strength of selection. If the mutation rate is
sufficiently small we can assume that there are at most two
strategies present in the system at any given time (Fudenberg and
Imhof, 2006). Then we can use the fixation probabilities, or their
large N asymptotic values (Antal and Scheuring, 2006; Traulsen
et al., 2006), and describe the system effectively as a Markov
process on n homogeneous strategy states. This description,
however, can lead to very different conditions for arbitrary
selection and for weak selection. Note also that if two strategies
j and k tend to coexist, ajjoakj and ajk4akk, the time spent in the
mixed strategy state is exponentially large in N (Antal and
Scheuring, 2006). Hence in this case, the effective Markov process
description is only valid for extremely small mutation probabil-
ities u5e%lN , where l is a constant.

4.2. More general mutation rates

Throughout this paper we have considered uniform mutations:
each strategy mutates with the same probability u to a random
strategy. In this section, we extend our method to a more general
class of mutation rates. For uniformmutation rates strategies have
equal abundances in the absence of selection, and we have studied
the effect of selection on this uniform distribution. Conversely, for
non-uniform mutation rates strategies typically have different
abundances already in the absence of selection. It can be still of
interest to study whether selection increases or decreases these
neutral abundances. In principle the perturbation theory, pre-
sented in this paper, can be repeated for general mutation
probabilities, the discussion however becomes unwieldy.

Here we present an easy generalization to a specific class of
mutation rates. Imagine that each player mutates with probabilityu,
but instead of uniformly adopting a new strategy, it adopts strategy j
with probability pj40. We can approximate these probabilities
(up to arbitrary precision) by rational numbers pj ¼ mj=M, with
M ¼

P
imi, and all mjX1. Then instead of our n-strategy game, we

consider an M-strategy game, where each original strategy j is

represented mj times. Instead of the n! n payoff matrix, it is
straightforward to construct the M !M payoff matrix, with which
all our formulas (1), (2) or (3) automatically apply.

4.3. Alternative processes

Although we have focused on the Moran model in this paper,
the results are almost identical for the W–F process and for the
Pairwise Comparison process. In the W–F model, each player of a
new (non-overlapping) generation chooses a parent from the
previous generation with probability (abbreviated as w.p.)
proportional to the parent’s payoff. The offspring inherits the
parent’s strategy w.p. 1% u, or adopts a random strategy w.p. u.

The expected number of offspring of a k-player in the next
generation due to selection is ok ¼ Nf k=F, in a given state. In the
weak selection limit d ! 0 it becomes

ok ¼ 1þ d½ðAxÞk % xTAx$. (41)

This is the same as the analog expression (5) for the Moran
process, apart from the extra N factor. That N factor is due to the
definition of time: time is measured in single player update steps
in the Moran model, while in generations in the W–F model. For
the neutral correlations, the only difference between the two
models in the large N limit is that in the W–F model both linages
can have mutations in each step. Hence all the neutral correlations
s2 and s3 are the same as in the Moran model of Appendix A,
provided we use m ¼ 2Nu. Consequently, hDxselk id becomes N times
larger than for the Moran process (19), and m ¼ 2Nu.

Taking into account mutations as well, the expected total
change of frequency in one generation is

Dxtotk ¼ Dxselk ð1% uÞ þ u
1
n
% xk

! "
, (42)

similarly to (10). Hence the average frequency of k-players in the
stationary state is

hxkid ¼
1
n
þ

1% u
u

hDxselk id, (43)
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Fig. 3. Strategy abundance in the interaction between AllC, AllD, and TFT in the probability simplex S3. Dark areas are inaccessible to the evolutionary dynamics. Red lines
show thresholds where a strategy abundance crosses 1

3, the thresholds are given in terms of b=c. Blue lines depict thresholds where two strategy abundances are identical.
(a) For small mutation rates, the abundance of AllC is never above 1

3 and it is never greater than the abundance of TFT. (b) For high mutation rates, the abundance of AllC is
above 1

3 in the yellow shaded area, but again it never exceeds the abundance of TFT. (For interpretation of the references to colors in this figure legend, the reader is referred
to the web version of this article.)
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which is identical to (11) apart from an extra N factor. Since we
also have an extra N factor in hDxselk id for the W–F process, these
factors cancel out, and we obtain the same stationary density (20)
as for the Moran process but with 2Nu instead of Nu (similarly to
Antal et al., 2008). This also implies that the condition for greater
abundance (3) becomes Lk þ 2NuHk40.

Conversely, the results are identical for the Moran and the
Pairwise Comparison process. In this latter model we pick
randomly a pair of players, say a type j and a type k. The j-player
then adopts strategy k w.p. Fðf j % f kÞ, otherwise the k-player
adopts strategy j. Here FðyÞ ¼ ½1þ edy$%1 is the Fermi function,
and the fitnesses are defined as f ¼ Ax. The above comparison of
the pair of players takes place w.p. 1% u. Instead, w.p. u one of
them adopts a random strategy.

Let us calculate directly the change of the frequency of
k-players due to selection Dxselk in state X. The number of
k-players changes if we pick a k player and a jak player, which
happens w.p. 2xkxj. Then the frequency xk increases by 1=N w.p.
Fðf j % f kÞ, and decreases by 1=N w.p. Fðf k % f jÞ. This leads to

Dxselk ¼
2xk
N

X

jak

xj½Fðf j % f kÞ %Fðf k % f jÞ$, (44)

which, in the leading order of small d, becomes

Dxselk ¼
dxk
N

X

jak

xjðf k % f jÞ ¼
dxk
N

f k %
X

j

xjf j

0

@

1

A. (45)

With the above definition of fitness we arrive at the same
expression we obtained for the Moran process (6) and (7). Since
without selection this model is equivalent to the Moran model, all
neutral correlations s2 and s3 are also the same. Mutations in this
model have the same effect as in the Moran model (10).
Consequently all results we obtained for the Moran model are
valid for the Pairwise Comparison process as well.

5. Discussion

We have studied evolutionary game dynamics in well-mixed
populations with n strategies. We derive simple linear conditions
which hold for the limit of weak selection but for any mutation
rate. These conditions specify whether a strategy is more or less
abundant than 1=n in the mutation-selection equilibrium. In the
absence of selection, the equilibrium abundance of each strategy
is 1=n. An abundance greater than 1=n means that selection
favors this strategy. An abundance less than 1=n means that
selection opposes this strategy. We find that selection favors
strategy k if Lk þ NuHk40, where Lk and Hk are linear functions of
the payoff values given by Eqs. (1) and (2). The population size is
given by N and the mutation probability by u. Furthermore, if
Lk þ NuHk4Lj þ NuHj then the equilibrium abundance of strategy
k is greater than that of strategy j. In this case, selection favors
strategy k over j.

The traditional approach to study deterministic game dy-
namics in large populations is based on the replicator equation
(Hofbauer and Sigmund, 1998), which describes selection dy-
namics of the average frequencies of strategies. (Note the formal
similarity between (7) and the replicator equation.) This method,
however, neglects fluctuations around the averages. In this paper,
we have taken into account stochastic fluctuations, and derived
exact results in the limit of weak selection. We find the average
frequencies of strategies in the stationary state, and conditions for
a strategy to be more abundant than another strategy. Our
conditions are valid for arbitrary values of the mutation rates. For
small mutation rates these conditions describe which strategy has
higher fixation probability (Nowak et al., 2004).

Throughout the paper we have considered large population
size, N, in order to simplify the presentation. But in principle all
calculations can be performed for any given population size N and
mutation probability u (see for example Antal et al., 2008). The
mutation probability is a parameter between 0 and 1. In a social
context, mutation can also mean ‘exploration’: people explore the
strategy space by experimenting with new strategies (Traulsen
et al., 2009). A high mutation probability seems to be appropriate
for social evolutionary dynamics. Our conditions can be applied
for the initial analysis of any evolutionary game that is specified
by an n! n payoff matrix.
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Appendix A. Probabilities s2 and s3

This section is valid for any number nX1 of strategies. We
calculate the probabilities s2 and s3 in the neutral (d ¼ 0)
stationary state. First consider the simpler s2, that is the
probability that two randomly chosen players have the same
strategy. We shall use the Moran model and apply coalescent
ideas (Kingman, 1982a, b, 2000; Haubold and Wiehe, 2006; Antal
et al., 2008; Wakeley, 2008). Coalescence means that different
family lines collide in the past. A key fact behind this idea is that
there is always a common ancestor of multiple individuals in
finite populations. In the absence of mutations, any two players
have the same strategy in the stationary state, because they both
inherit their strategy from their common ancestor. In the presence
of mutations, two players may have different strategies due to
mutations after the branching of their ancestral lineage. Therefore,
tracing the lineage of two players backward in time and finding
the most recent common ancestor, from which two family lines
branch, enable us to estimate the similarity of two players in
strategies.

Consider two different individuals and let us trace their
lineages backward in time. In the neutral Moran process, two
lineages coalesce in an elementary step of update (i.e. two players
share the same parent) with probability 2=N2. Here and thereafter
we assume that the population size is large, hence we can use a
continuous time description, where the rescaled time is
t ¼ t=ðN2=2Þ. In the rescaled time, the trajectories of two players
coalesce at rate 1. Following the trajectory of an individual back in
time, we see that mutations happen at rate m=2 ¼ Nu=2 to each
trajectory.

The coalescence time t2 is described by the density function

f 2ðt2Þ ¼ e%t2 . (A.1)

Immediately after the coalescence of two players we have two
players of the same strategy. What is the probability s2ðtÞ that
after a fixed time t they have again the same strategy? With
probability (abbreviated as w.p.) e%mt none of them mutated, so
they still have the same strategy. Otherwise at least one of them
mutated, hence they have the same strategy w.p. 1=n. The sum of
these two probabilities gives

s2ðtÞ ¼ e%mt þ
1% e%mt

n
. (A.2)

ARTICLE IN PRESS

T. Antal et al. / Journal of Theoretical Biology 258 (2009) 614–622 621



Author's personal copy

Now we obtain the stationary probability s2 by integrating this
expression with the coalescent time density of (A.1) as

s2 ¼
Z 1

0
s2ðtÞf 2ðtÞdt ¼

nþ m
nð1þ mÞ . (A.3)

Next we calculate the probability s3 that three randomly chosen
players have the same strategy. Any two trajectories of three
players coalesce at rate 1, hence there is a coalescence at rate 3.
The coalescence of two out of the three trajectories then happens
at time t3, described by the density function

f 3ðt3Þ ¼ 3 e%3t3 . (A.4)

The remaining two trajectories then coalesce at time t2 earlier,
with density function (A.1). Before the first coalescence at time t3
backward, the two players have the same strategy w.p. s2, and of
course they are different w.p. 1% s2, where s2 is given by (A.3).
Hence just after this coalescence event we have either three
identical players w.p. s2, or two identical and one different player
otherwise. Now we shall see what happens in these two scenarios.

If we have three identical players then they are also identical
after time t w.p.

s+3ðtÞ ¼
1
n2

½1þ 3ðn% 1Þ e%mt þ ðn% 1Þðn% 2Þ e%3=2mt$. (A.5)

To derive this expression note that w.p. e%3=2mt none of the players
have mutated, hence they have the same strategy. Then w.p.
3ð1% e%m=2tÞ e%mt one of them has mutated, hence they are the
same w.p. 1=n. Otherwise at least two of them mutated hence they
are the same w.p. 1=n2. By collecting these terms one obtains (A.5).

Similarly, if after the first coalescence only two players share
the same strategy and one has a different strategy, the probability
of all three having the same strategy after time t is

s++3 ðtÞ ¼ 1
n2

½1þ ðn% 3Þ e%mt % ðn% 2Þ e%3=2mt$. (A.6)

Now we can simply obtain s3 by first integrating over the
coalescent time distribution (A.4) for the two different initial
conditions, and then weighting them with the probabilities of the
initial conditions, namely

s3 ¼ s2

Z 1

0
s+3ðtÞf 3ðtÞdtþ ð1% s2Þ

Z 1

0
s++3 ðtÞf 3ðtÞdt

¼
ðnþ mÞð2nþ mÞ
n2ð1þ mÞð2þ mÞ . (A.7)

References

Antal, T., Nowak, M.A., Traulsen, A., 2009. Strategy abundance in 2! 2 games for
arbitrary mutation rates. J. Theor. Biol. 257, 340–344.

Antal, T., Ohtsuki, H., Wakeley, J., Taylor, P.D., Nowak M.A., 2008. Evolutionary game
dynamics in phenotype space. e-print arXiv:0806.2636.

Antal, T., Scheuring, I., 2006. Fixation of strategies for an evolutionary game in
finite populations. Bull. Math. Biol. 68, 1923–1944.

Aumann, R.J., Maschler, M., 1995. Repeated Games with Incomplete Information.
MIT press, Cambridge.

Binmore, K., 1994. Game Theory and Social Contract. MIT press, Cambridge.
Bonhoeffer, S., Nowak, M.A., 1995. Mutation and the evolution of parasite

virulence. Proc. R. Soc. London B 258, 133–140.
Cressman, R., 1992. The stability concept of evolutionary game theory. In: Lecture

Notes in Biomathematics, vol. 94.
Ficici, S., Pollack, J., 2000. Effects of finite populations on evolutionary stable

strategies. In: Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer,
H.-G. (Eds.), Proceedings GECCO. Morgan Kaufmann, San Francisco, pp. 927–934.

Fogel, G., Andrews, P., Fogel, D., 1998. On the instability of evolutionary stable
strategies in small populations. Ecol. Model. 109, 283–294.

Fudenberg, D., Imhof, L.A., 2006. Imitation processes with small mutations. J. Econ.
Theor. 131, 251–262.

Fudenberg, D., Tirole, J., 1991. Game Theory. MIT press, Cambridge.
Haubold, B., Wiehe, T., 2006. Introduction to Computational Biology: An

Evolutionary Approach. Birkhäuser, Basel.
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