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H I G H L I G H T S

c Mathematical theory that explores how evolution can be constructive.
c Two fundamental operations: ‘staying together’ (ST) and ‘coming together’ (CT).
c ST-individuals form larger units by not separating after reproduction.
c CT-independent individuals form aggregates.
c ST and CT are very different mechanisms.
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a b s t r a c t

The evolutionary trajectory of life on earth is one of increasing size and complexity. Yet the standard

equations of evolutionary dynamics describe mutation and selection among similar organisms that

compete on the same level of organization. Here we begin to outline a mathematical theory that might

help to explore how evolution can be constructive, how natural selection can lead from lower to higher

levels of organization. We distinguish two fundamental operations, which we call ‘staying together’

and ‘coming together’. Staying together means that individuals form larger units by not separating after

reproduction, while coming together means that independent individuals form aggregates. Staying

together can lead to specialization and division of labor, but the developmental program must evolve in

the basic unit. Coming together can be creative by combining units with different properties.

Both operations have been identified in the context of multicellularity, but they have been treated

very similarly. Here we point out that staying together and coming together can be found at every

level of biological construction and moreover that they face different evolutionary problems. The

distinction is particularly clear in the context of cooperation and defection. For staying together the

stability of cooperation takes the form of a developmental error threshold, while coming together

leads to evolutionary games and requires a mechanism for the evolution of cooperation. We use our

models to discuss simple aspects of the evolution of protocells, eukarya, multi-cellularity and animal

societies.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Evolution is constructive. Over time evolution has led from
simple to complicated forms, from prokaryotic to eukaryotic cells,
from single cellular to multicellular organisms, from solitary
insects to colonies, from animal groupings to human society
(Bonner, 1988, 1998; Carroll, 2001; Knoll, 2011; Lynch and

Conery, 2003; Maynard Smith and Szathmary, 1998). Yet most
mathematical descriptions of evolution so far have focused on
competition on the same level of organization (Crow and Kimura,
2009; Eigen and Schuster, 1977; Ewens, 2010; Fontana and Buss,
1994; Hofbauer and Sigmund, 1998; May, 2001; Nowak, 2006).
We think that it will likely be profitable to introduce mathema-
tical models that explicitly distinguish two basic operations
underlying evolution’s propensity for construction, these being
the operations of staying together (ST) and coming together (CT).
As a first step to this end, we present in the body of this paper
some simple mathematical models for both the ST and CT
operations. These two operations appear to have been involved
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in all great creative steps in the evolution of life on earth (Fig. 1).
What follows directly in this introduction gives a handful of
examples where the distinction between ST and CT might lead to
novel insights.

The emergence of protocells requires the coming together of
lipid membranes and informational polymers (Chen et al., 2004).
The former generate replicating vesicles which provide spatially
localized compartments. The latter give rise to replicating gen-
omes that encode heritable information. The replication of poly-
mers within vesicles leads to a staying together of parent and
offspring polymers. Separation can occur during protocell
division.

The endosymbiotic theory suggests that the emergence of the
eukaryotic cell was caused by the coming together of different
bacterial cells (Margulis, 1981). Endosymbiosis means that one
cell makes a living inside another cell. The organelles of the
eukaryotic cell, such as mitochondria and chloroplasts, are
thought to have arisen in this way. The creative potential of CT
is evident in this process, as the symbiotic fusion can involve cells
with very different properties thereby leading to entirely new
organisms. The reproduction of the endosymbiont within its host
cell causes a staying together of the endosymbiont.

Multicellularity has evolved many times and in all three
domains of life (archea, bacteria, eukaria) (Bell, 1997; Bonner,
2008; Boraas et al., 1998; Furusawa and Kaneko, 2000; Grosberg
and Strathmann, 2007; Hall-Stoodley et al., 2004; King, 2004;
Kirk, 2003, 2005; Kolter, 2010; Michod, 2007; Michod and Roze,
2001; Pfeiffer and Bonhoeffer, 2003; Rainey and Kerr, 2010;
Rossetti et al., 2010; Stanley, 1973; Webb et al., 2003;
Willensdorfer, 2008; Wolpert, 1990). The evolution of multi-
cellularity from unicellular ancestors led to macroscopic forms
with new body plans, higher grades of morphological complexity
and was often followed by periods of rapid diversification. It has
been suggested that aquatic organisms often evolved multicellu-
larity as the products of cell division failed to separate (ST), while
several terrestrial origins involved motile aggregation of cells or
nuclei (CT) (Bonner, 1998). Multicellularity allows the subsequent
evolution of cellular differentiation and division of labor. In

cyanobacteria, for example, specialized heterocysts occur at
regular intervals within filaments and perform nitrogen fixation,
while the surrounding vegetative cells engage in photosynthesis.

Another major constructive event in the evolutionary unfold-
ing of life on earth is the emergence of animal societies
(Alexander, 1974; Krebs and Davies, 1991; Gadagkar, 2001;
Gadagkar and Bonner, 1994; Hölldobler and Wilson, 2009; Hunt,
2007; Leadbeater et al., 2011). The two mechanisms that we
describe in this paper are identified as the two primary routes by
which animal societies form (Krebs and Davies, 1991). Coming
together occurs when individuals aggregate because of inherent
advantages of group living—for example, increased alertness and
defense against predators (as seen in groups of baboons) and
increased capabilities for detecting and harvesting difficult to
locate food resources (as seen in lions, wolves or wild dogs)
(Alexander, 1974). Staying together occurs when offspring delay
dispersal and remain with their natal group because of various
constraining factors that restrict their option of dispersing and
breeding on their own. This is the case in many cooperatively
breeding birds and mammals where offspring delay dispersal and
help at the nest of their parents. Delayed dispersal can happen, for
example, because offspring are unable to find nesting sites of their
own (Alexander, 1974; Leadbeater et al., 2011). ST might arise for
instance when mutations or behavioral modifications prevent
offspring from leaving the nest. This is the more likely route for
the origin of eusociality in insects. There are notable similarities
when comparing the evolution of social insects and multicellu-
larity; in both cases we find large variation in group size ranging
from solitary reproduction to complex colonies with division of
labor (Gadagkar and Bonner, 1994). While ST is the more likely
route to eusociality, CT occurs in certain cases where multiple
fertilized females join forces to establish a new colony (Gadagkar,
2001; Hölldobler and Wilson, 2009; Hunt, 2007). ST is the step
that leads from subsocial to eusocial (Nowak et al., 2010; Hunt,
2011), while CT can lead from parasocial to primitively eusocial
(Gadagkar, 2001).

In many examples of social aggregations both CT and ST
operate at the same time; for example, the offspring of coopera-
tively breeding birds stay with the nest, thus performing ST, but
females immigrate and join new nests which is a form of CT.
Similarly, prides of lions are formed of sisters (ST) joined by
immigrant males (CT). While often both mechanisms are
employed simultaneously, a study of each mechanism indepen-
dently can provide important insight into the similarities and
differences between them. Based on this understanding, more
complex scenarios can then be analyzed. To exemplify the way
our framework can be used to describe situations where both
staying together and coming together occur simultaneously we
use an existing classification of social behaviors in insects
(Michener, 1974) and give a parallel classification in terms of ST
and CT (Fig. 2).

In this paper we are concerned with the primitive forms of
construction. Once construction has been achieved, one can
discuss the maintenance of complexes, the evolution of speciali-
zation, the point of no return (beyond which a reversal to a
solitary state is impossible due to complete specialization)
(Crespi, 2008) and the progression to higher dimensional pheno-
type spaces, which can promote the evolution of biological
diversity (Doebeli and Ispolatov, 2010). While this framework
can still be employed to address some of these issues, these are
not the questions we are trying to address here. What we are
concerned with in this paper is the very first stage of construction
and how that might occur and be selected for.

This paper proposes a framework in which biological con-
struction can be analyzed, but we do not study a specific model
system. In many ways our models are only very preliminary steps

+

+ +
CT ST ST 

+ +
CT ST ST 

+

Fig. 1. (a, b) Staying together, ST, and coming together, CT, are fundamental

operations which empower biological construction. (c, d) Many origins of multi-

cellularity are based on ST, while others involve CT. (e) Protocells arise when lipid

vesicles and RNA replicators come together. Subsequently the structure of the

protocell enables the RNA sequences to stay together after replication. (f) The

endosymbiotic theory is based on a coming together of different bacteria and a

staying together of the endosymbionts after reproduction within the host.
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to introduce ST and CT for haploid systems and to show that a
study of the differences between the two processes is worthwhile.
We do not claim that our models can be immediately applied to
the examples discussed above but we hope that our framework
can be extended and eventually applied to study specific model
systems. Any such application will likely require adapting our
framework to the particular system and adding layers of specifi-
city to the bare backbone we provide. However, in doing so, one
could make predictions, use the framework to analyze them
theoretically, set up experiments to test empirically and then
compare theory and practice.

Maynard Smith and Szathmary (1998) offer qualitative dis-
cussions of these mechanisms in the context of major transitions
in evolution; see also Queller (1997, 2000). Grosberg and
Strathmann (2007) provide an extensive review of mechanisms
for the evolution of multicellularity. Theoretical discussions for
the evolution of multi-cellularity are given by Michod and Roze
(1999) and Michod (2007). These discussions present the evolu-
tion of multi-cellularity either as a kin selection or as a multilevel
selection problem where groups of cooperating individuals
become so integrated that they evolve into new higher-level
individuals (Michod, 2007). Both ST and CT are mentioned, but
are treated within the same approach. In this paper we show that
there is a significant difference between staying together and
coming together and their respective outcomes.

The paper is organized as follows. In Section 2 we discuss the
mathematical model for staying together. In Section 3 we discuss the
model for coming together. In Section 4 we compare the mathema-
tical insights obtained in the previous two sections for ST and CT. In
Section 5 we address the problem of cooperation and conflict for
both ST and CT. One of the advantages of complex formation is the
potential for the exploration of new niches. In Section 6 we explore
how inhabiting a new niche can facilitate the evolution of construc-
tion. We conclude by discussing in Section 7 the importance of the
ST–CT framework and the possible ways in which it can be employed
to illuminate the idea of construction in biology.

2. Staying together (ST)

In this section we formulate a theory for staying together (ST).
There are two types of units, A and B. Following reproduction, the

former can make complexes of increasing size, while the latter
always separate. For simplicity, we assume that q is independent
of the size of the complex. Let Ai denote complexes of size i; they
produce new units at rate ai. B reproduces at rate b. Complexes
that result from staying together can have different ways of
reproduction. One way of reproduction, which we will simply
call ST, behaves such that an Ai complex produces a new cell A

which then can start forming its own complex.
A second way of reproduction exists which can be seen for

instance in chain forming bacteria (e.g. cyanobacteria). There, a
filament fissions into two filaments of arbitrary size (this is a
generalization of the above case; occasionally a single cell might
break away, but bigger aggregates can also break away). We call
this process ‘‘ST with chain breaking’’.

Finally we identify a third way of reproduction, which we call
‘‘ST protocells’’. This is inspired by the emergence of protocells.
The emergence of protocells requires the coming together of lipid
membranes and informational polymers. The former generate
replicating vesicles which provide spatially localized compart-
ments. The latter give rise to replicating genomes that encode
heritable information. To describe the formation of protocells in
terms of ST, let A be an RNA inside a lipid vesicle. Let B be free
RNA (outside any vesicles). We will denote by Ai a vesicle that
contains i copies of RNA. Inside the vesicle, the RNA makes more
copies of itself. At rate r, the lipid vesicle can divide into two
vesicles, each containing some of the RNAs from the larger vesicle.

Below we discuss these three possibilities.

2.1. ST

In this section we look at one possibility for how ST could
work. There are two types of units, A and B. Following reproduc-
tion, the former stay together with probability q, while the latter
always separate. Let Ai denote aggregates of size i; they produce
new units at rate ai and die at rate di. B reproduces at rate b and
dies at rate d. The parameters ai and b constitute the fitness
landscape. Different fitness landscapes can lead to different out-
comes. We have the following system of ‘biological reactions’:

Ai-
aiq

Aiþ1

Ai -
aið1�qÞ

AiþA

Level of 
Sociality 

Cooperative 
Brood Care 

Overlapping
generations 

Division of 
labor

ST/CT 
framework 

Solitary - - - solitary 

Subsocial - - - preST

Communal - - - preCT

Quasisocial + - - CT+preST

Semisocial + - + CT + preST
+ division of labor 

Eusocial
(subsocial route) 

+ + + preST           ST 
+ division of labor 

Eusocial
(parasocial route) 

+ + + CT+preST            CT+ST 
+ division of labor 

Fig. 2. A classification using the CT/ST framework of the different types of social behavior encountered in insects. We define preST to be a precursor state of staying

together (ST). In the case of social insects, this corresponds to subsocial species: a mother feeding her daughters until they are grown, after which both the mother and the

young disperse. We define preCT to be a precursor state of coming together (CT). This denotes an aggregation whose units do not interact, despite being in close proximity.

For social insects, this corresponds to communal breeders. Then quasisocial species which are aggregations of adult mothers engaging in cooperative brood care, followed

by dispersal of the young when reaching maturity can be described as a CT event followed by a preST event. Semisocial behavior is the same as quasisocial, except that it

also has division of labor. Eusocial behavior developed via the subsocial route represents a transition from preST to ST. Eusocial behavior developed via the parasocial route

represents a transition from CTþpreST to CTþST. The latter seems to be rarely found and is usually referred to as primitive eusociality. In both cases, eusociality also has

division of labor.
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Ai-
di

0

B-
b

BþB

B-
d

0 ð1Þ

These reactions can be captured by the following system of
differential equations, where xi denotes the abundance of com-
plex Ai and y denotes the abundance of B:

_x1 ¼ ð1�qÞ
X

i

aixi�qa1x1�d1x1�fx1

_xi ¼ qðai�1xi�1�aixiÞ�dixi�fxi i¼ 2,3, . . .

_y ¼ ðb�dÞy�fy ð2Þ

The additional death term f is chosen such that the total
abundance of units (not of complexes) is constant:
yþ
P

iixi ¼ constant. Without loss of generality we will assume
this constant to be 1. Then the f that fulfills the condition
yþ
P

iixi ¼ 1 is f¼ ðb�dÞyþ
P

iðai�idiÞxi. For the system studied
here we cannot give a general explicit formula for f, but only an
implicit one as will be seen below.

Because we assume that the two types compete for the same
niche, this system is characterized by competitive exclusion (for a
generic choice of parameters). The system has two equilibria—an
all-x equilibrium and an all-y equilibrium. Depending on the
parameters, one of them will be stable and one unstable with
respect to invasion by the other. This means that either A or B

wins while the other is driven to extinction. In order to analyze
this system, we calculate f for the all-x equilibrium and for the
all-y equilibrium. The equilibrium that has the larger f is stable.

At the all-y equilibrium we find f¼ b�d. At the all-x equili-
brium we find f to be given by

1¼
1�q

q

X
nZ1

Yn

k ¼ 1

qak

fþdkþqak

ð3Þ

Then the condition that A wins is equivalent to f4b�d which
gives

1�q

q

X
nZ1

Yn

k ¼ 1

qak

b�dþdkþqak

Z1 ð4Þ

Further analysis is not possible without deciding on a ‘‘death
landscape’’ (i.e. how di depends on i) and this needs to be
specified for the particular system under study. Throughout the
rest of the paper we will study the case di ¼ d¼ 0 because the
conclusions that we are interested in (e.g. competitive exclusion)
are preserved in this case. Moreover, this choice allows us to focus
on the fitness landscape. In this case, the equations become

_x1 ¼ ð1�qÞ
X

i

aixi�qa1x1�fx1

_xi ¼ qðai�1xi�1�aixiÞ�fxi, i¼ 2,3, . . .

_y ¼ by�fy ð5Þ

The death rate f is chosen, as before, such that the total
abundance of units is constant: yþ

P
iixi ¼ 1. It is easy to see that

the f that fulfills this condition is f¼ byþ
P

iaixi.
The use of f is exactly as in the quasispecies equation and in

the replicator equation (Eigen and Schuster, 1977; Hofbauer and
Sigmund, 1998). We note that all A complexes have exactly the
same death rate, f, independent of their size; a singleton B has
the same death rate, f as well. This corresponds to a system in
which complexes disappear because of dilution, not because of
actual death—for example, a small pond in which water con-
tinually flows in and out or a flow reactor in a lab. For a discussion
of other possible types of density limitation see Appendix A.

Substituting di ¼ d¼ 0 in the condition above, we find the
condition that A wins

1�q

q

X
nZ1

Yn

k ¼ 1

qak

bþqak

Z1 ð6Þ

In the special case where a1 ¼ b¼ 1 and ak ¼ a for all kZ2 we
find that A grows faster than B if a42=ð1�qÞ.

Another interesting special case is ak ¼ kb for all k. Here the
two strategies are neutral in the sense that they both have the
same f value, f¼ b. To prove neutrality, note that we chose f
such that yþ

P
ixi ¼ 1. Then f¼ byþ

P
aixi ¼ bðyþ

P
ixiÞ ¼ b.

One immediate implication of this result is that in order for A to
outperform B, at least one ai has to be greater than b. In other
words, at least one of the Ai aggregates has to be better at
producing As than i copies of the single B are at producing Bs.
Note that for the case when the death rates are distinct for
complexes of different sizes the neutrality condition is
ai�idi ¼ iðb�dÞ for all i.

If a1ob then there is a cost for having the ability to do ST
when comparing the reproduction rate of single units. In this case,
one can find landscapes where ST is not ‘‘fast enough’’ in forming
aggregates and hence A loses against B regardless of what q is. It is
in general very hard to classify all landscapes for which ST is not
‘‘fast enough’’; however, we can study a sufficiently general case
that will exemplify our claim. Consider the landscape
a1 ¼ � � � ¼ ak ¼ a1b and ai ¼ a2b for all iZkþ1, such that
a1o1oa2. Then condition (6) becomes

a1þða2�a1Þ
qa1

1þqa1

� �k

4
1

1�q
ð7Þ

Since qo1 and a1o1 then qa1=ð1þqa1Þo1=2 which means that
the left hand side of the above condition is less than ða1þa2Þ=2. It
is then easy to choose a1o1oa2 such that ða1þa2Þ=2o1 and
since 1=ð1�qÞ41 for all q, condition (7) will never be fulfilled, for
any q. For simplicity we made a very course argument above, but
in fact for a very large range of parameters a1o1oa2, condition
(7) will not hold for any q.

If however a14b then even as a single unit, A is better than B

at making more copies of itself. Hence it wins even for q¼0 (this
means that there is no need for A to make aggregates because
even in the single unit phase it is nevertheless better than B).
Thus, the most interesting case to study is a1rb.

Finally, another interesting fact about ST is that the average
size of the A aggregates at equilibrium does not depend on ai and
is equal to 1=ð1�qÞ. The average size of the system is given by
ð
P

iixiÞ=ð
P

ixiÞ ¼ 1=ð
P

ixiÞ, since
P

iixi ¼ 1. To prove this statement
we use the following two equilibrium equations:

ð1�qÞ
X
iZ1

aixi�ðqa1þfÞx1 ¼ 0 ð8Þ

qai�1xi�1�ðqaiþfÞxi ¼ 0 ð9Þ

Summing (9) for iZ2 and using the fact that f¼
P

aixi we find
that

P
iZ2ðqaiþfÞxi ¼ qf and therefore qf�ðqa1þfÞx1þf

P
iZ1

xi ¼ qf. This together with (8) yields

f
X
iZ1

xi ¼ ðqa1þfÞx1 ¼ ð1�qÞf ð10Þ

Hence, the average size of the system becomes
P

ixi=
P

xi ¼ 1=
ð1�qÞ. In the more general case when we allow for different death
rates, the corresponding finding is that

P
iðdiþfÞxi=

P
ðdiþfÞxi ¼

1=ð1�qÞ.
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2.2. ST with chain breaking

In this section we analyze staying together with chain break-
ing. Again, there are two types of units, A and B. Let ai be the rate
at which an aggregate of size i turns into an aggregate of size iþ1.
Let c be the rate constant at which an aggregate breaks. The
breaking is random—a string of size i can break at i�1 many
places. We have the following ‘biological reactions’:

Ai-
ai

Aiþ1

Ai-
c

AkþAi�k i4kZ1

B-
b

BþB ð11Þ

These reactions can be represented by the following system of
differential equations, where xi is the frequency of aggregate Ai.

_x1 ¼�a1x1þ2c
X1
j ¼ 2

xj�fx1

_xi ¼ ai�1xi�1�aixi�cði�1Þxiþ2c
X1

j ¼ iþ1

xj�fxi i¼ 2,3, . . .

_y ¼ by�fy ð12Þ

As before, f is chosen such that yþ
P

iixi ¼ 1. Hence f¼ byþP
iaixi. For ai ¼ ib we can show neutrality as before. Using the first

equation and summing up the second equation at equilibrium for
iZ2 we find that the average size of the system

P
iixi=

P
xi ¼

1þf=c. This gives a very simple and interesting relationship
between the average size and f. As for the ST model, we find
competitive exclusion. The evolutionary outcome depends on the
value of c, the rate of chain breaking. We will exemplify this
statement by looking at a landscape like the one in Fig. 3: in such
a landscape, the ability to form chains has a cost which is
overcome by chains of intermediate length; long chains are
inefficient. In this case, for very low or very high values of c, ST
is outcompeted. If the rate of chain breaking is too high, then the
complexes break too often and they do not get the benefit of

reaching the intermediate size; if, on the other hand, the rate of
chain breaking is too low, then complexes become too large
which, by assumption, is inefficient.

Other important theoretical and experimental work which
addresses ST with chain break in filamentous bacteria is that
done by Rossetti et al. (in press). The way they model ST with
chain breaking is similar to our own approach. However, there are
some differences in the setup. Rossetti et al. (in press) assume
that every cell has the same birth rate regardless of the length of
the chain, but dependent on the total population size; moreover,
complexes can only break when cells die and the death rate of
a cell is again independent of the size of the complex it belongs
to, but dependent on the total population size. There are also
differences in the questions we ask: while Rossetti et al. (in press)
want to understand distributions of filament lengths without a
priori assuming any benefits of complexes compared to multi-
cellular life, we are more concerned with the conditions under
which filaments can outcompete their solitary ancestors. While
Rossetti et al. (in press) often find coexistence at equilibrium, we
look at situations where competitive exclusion is present. Both
questions are very relevant to the study of the emergence of
multicellularity.

2.3. ST protocells

The emergence of protocells requires the coming together of
lipid membranes and informational polymers. The former gen-
erate replicating vesicles which provide spatially localized com-
partments. The latter give rise to replicating genomes that encode
heritable information. Below we describe the formation of proto-
cells in terms of ST.

Let A be an RNA inside a lipid vesicle. Let B be free RNA
(outside any vesicles). We will denote by Ai a vesicle that contains
i copies of RNA. Inside the vesicle, the RNA makes more copies of
itself. At rate r, the lipid vesicle can divide into two vesicles, each
containing some of the RNAs from the larger vesicle. We can then
write the following biological reactions:

Ai-
ai

Aiþ1

Ai-
rik

AkþAi�k i4kZ1

B-
b

2B ð13Þ

where

rik ¼ r
i

k

� �
1

2i
ð14Þ

Although the process seems similar to that of ST with chain
breaking, the dynamics and consequently the equations describ-
ing the dynamics are different. This comes from the fact that a
chain of length i can break into a chain of size k and one of size
i�k in two ways whereas it is natural to assume that the RNA
molecules inside the cell are randomly distributed over the
daughter cells which means that the breaking of a cell with i

molecules into two cells with i�k and k molecules respectively,
can happen in ð ikÞ ways. We thus obtain the following system of
equations:

_x1 ¼�a1x1þr
X
kZ1

k

2k�1
xk�rx1�fx1

_xi ¼ ai�1xi�1�aixiþr
X
jZ i

1

2j�1

j

i

� �
xj�rxi�fxi

_y ¼ by�fy ð15Þ

As usual, the density dependent death rate is chosen such that
yþ

P
ixi ¼ 1 which yields f¼ byþ

P
aixi. Again, it is

Fig. 3. A model of staying together, which is inspired by simple organisms that

form multi-cellular chains. Cell division increases the length of a chain. Chains can

break into two pieces thereby increasing the number of chains. A chain of length n

can break in n�1 places. The rate of chain breaking is the same for each place and

given by c. The figure shows the equilibrium configuration. As for the standard ST

model there is competitive exclusion: A and B cannot coexist. We choose a fitness

landscape where the ability to form chains has a cost, which is overcome by chains

of intermediate length. Longer chains are inefficient. In particular we assume:

ai ¼ 0:95i for i¼ 1,2,3; ai ¼ 2i for i¼ 4,: :,8 and ai ¼ 0:3i for all iZ9. The evolu-

tionary outcome depends on the rate of chain breaking, c. A wins if approximately

0:29oco3:2. Otherwise B wins. If c is too small then long, inefficient chains

accumulate. If c is too large, then chains of optimum length (i¼ 4, . . . ,8) are rarely

formed. Color code: green for xi with i¼4: :8; blue for all other xi (1, 2, 3, 9,

10,yfrom top to bottom); red for y; equilibrium abundances are shown. (For

interpretation of the references to color in this figure caption, the reader is

referred to the web version of this paper.)
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straightforward to see that if ai ¼ bi for all iZ1, the system is
neutral, since f¼ b.

In Fig. 4 we perform simulations to show how the evolutionary
outcome of the competition between free RNAs and RNAs con-
tained in vesicles depends on the rate r of cell division. For
comparison, we have chosen to look at the same fitness landscape
as for ST with chain breaking. As before, we find competitive
exclusion. For small and large rates of cell division the solitary
RNAs win: for small rates this is because the protocells grow too
big and inefficient; for large rates of cell division it is because the
protocells divide too much and they are too small, where again it
is costly and inefficient. Thus for this fitness landscape protocells
win only for intermediate rates of cell division.

2.4. Example: ST with maximum size n¼2

To conclude the discussion of ST, let us consider the following
simple example of ST, where complexes can have at most size 2.
Then the reactions can be written as

A-
a1q

AA

A -
a1ð1�qÞ

AþA

AA-
a2

AAþA

B-
b

2B ð16Þ

Note that in this case however, we cannot simply use the general
result derived above to find the condition for ST to win; this is
because we impose the cutoff n¼2 and hence we need to write a
different system of equations to describe the dynamics:

_x1 ¼ ð1�2qÞa1x1þa2x2�fx1

_x2 ¼ qa1x1�fx2

_y ¼ by�fy ð17Þ

The condition for the x equilibrium to be stable under invasion is

b2
�ba1ð1�2qÞ�qa1a2o0 ð18Þ

If moreover b¼ a1 then the above condition becomes a242a1. For
the system with the f density limitation we can, without loss of
generality, take b¼1. Then the condition that the x equilibrium is
stable is

q4
1�a1

a1ða2�2Þ
ð19Þ

Hence the success of ST depends on the probability of staying
together being large enough. If this is the case, then construction
by ST will outcompete solitary life. Since q is a probability it is
also bounded upwards by 1; this leads to the condition that
a241þ1=a1. Thus, for ST there are ai values where no q would
exist that is large enough for construction to be favored.

3. Coming together (CT)

Next we formulate a theory for coming together (CT). Again
there are two types of units. A units can combine with each other
at rate b to form complexes, while B units are always solitary. We
mentioned in the introduction that one of the most interesting
aspects of CT is that different types can come together to form
heterogenous complexes. In this paper we do not explore how
heterogeneous complexes form and behave, except in the context
of cooperation and defection where we look at what happens
when a defector type can join the complexes. Otherwise we only
look at homogenous complexes formed with one type. In this
case, the only difference between ST and CT is that CT requires the
presence of other individuals of the same type whereas ST grows
from one founder individual. As before, Ai complexes produce
new units at rate ai, while B reproduces at rate b. We obtain

AiþA-
b

Aiþ1

Ai-
ai

AiþA

B-
b

BþB ð20Þ

These reactions can be described by the following system of
differential equations, where xi is the abundance of aggregate Ai

and y is the abundance of B:

_x1 ¼
X

i

aixi�bx1

X
i

xi�bx2
1�fx1

_xi ¼ bx1ðxi�1�xiÞ�fxi i¼ 2,3, . . .

_y ¼ by�fy ð21Þ

As before, the density limitation is chosen such that yþ
P

ixi ¼ 1.
We then find that f¼ byþ

P
aixi. As for ST we find that the

fitness landscape ai ¼ ib for all i is neutral since f¼ byþ
P

aixi ¼

bðyþ
P

ixiÞ.
Unlike in the ST system where we find competitive exclusion,

in the CT system there can exist mixed equilibria or multiple
equilibria (see Fig. 5). While in general finding all these equilibria
is a hard problem, we can show that the all-x equilibrium is
unique. If y¼0 and f is such that

P
iZ1ixi ¼ 1, then we must have

that f¼
P

iZ1aixi. Moreover, from the second equation we find
that xi ¼ ðbx1=ðbx1þfÞÞi�1x1. Hence, we can rewrite the first
equation as f2

ð1�x1Þ�2fbx2
1�b

2x3
1 ¼ 0. We can solve this for f

to find that it must have a unique positive root

f¼ bx1

ffiffiffiffiffi
x1
p

1�
ffiffiffiffiffi
x1
p ð22Þ

Moreover, we know that

f¼
X

aixi ¼ x1

X
ai

bx1

bx1þf

� �i�1

¼ x1

X
aið1�

ffiffiffiffiffi
x1
p
Þ
i�1

ð23Þ

The last equality comes from substituting f in the denominator
by the expression in (22). Now denoting 1�

ffiffiffiffiffi
x1
p
¼w and equating

Fig. 4. A model of staying together, which is inspired by protocells. Here i denotes

the number of RNA molecules inside a cell. This number increases by RNA

replication. When a cell divides, the RNA molecules are randomly distributed

over the two daughter cells. This cellular RNA reproduction is in competition with

solitary RNAs that reproduce outside of cells. The evolutionary outcome depends

on the fitness landscape and the rate of cell division, r. We choose a fitness

landscape where protocells that harbour an intermediate number of RNAs have a

maximum replication rate. If the number of RNAs in a protocell is too small then

their catalytic activity (for example to bring nucleotides into the protocell) is too

low. If the number of RNAs in a protocell is too high then there is too much

competition for these nucleotides. As a simple numerical example we assume:

ai ¼ 0:95i for i¼ 1,2,3; ai ¼ 2i for i¼ 4,: :,8 and ai ¼ 0:3i for all iZ9. The replication

rate of RNA outside of cells is 1. There is competitive exclusion between A (RNA

inside protocells) and B (RNA outside protocells). In our example A wins if

approximately 1:8oro9:4. If r is too low then the amount of RNA inside

protocells is too large. If r is too high then the average amount or RNA inside

protocells is below maximum efficiency. Color code: green for xi with i¼4: :8; blue

for all other xi (1, 2, 3, 9, 10,yfrom top to bottom); red for y; equilibrium

abundances are shown. (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this paper.)
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the two expressions for f we find that the equilibrium x1 has to
be a zero of the function gðwÞ ¼�1þða1þbÞwþa2w2þa3w3þ � � �.
Since all ai40 and b40, then g is an increasing function on the
interval ½0,1Þ and thus if it has a solution, it must be unique.
Since gð0Þ ¼�1o0 and gð1Þ40, a solution must exist on the
interval ½0,1�. Hence the equilibrium is unique.

In general it is hard to determine which of the equilibria are
stable. The only case we can easily analyze is for the all-y

equilibrium. To determine its stability, we set f¼ b�d and
determine whether an E amount of x1 can grow. We find that
the all-y equilibrium is stable if and only if a1ob.

3.1. Example: CT with maximum size n¼2

As for ST, we now analyze the case where complexes can only
reach size n¼2.

AþA-
b

AA

A-
a1

AþA

AA-
a2

AAþA ð24Þ

Also, as in the case of ST, note that we cannot simply use the
general result derived above to find the condition for CT to win;
this is because we impose the cutoff n¼2 and hence we need to

write a different system of equations to describe the dynamics

_x1 ¼ a1x1þa2x2�2bx2
1�fx1

_x2 ¼ bx2
1�fx2

_y ¼ yðb�dÞ ð25Þ

The y¼0 equilibrium is given by

x1 ¼
a1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1þ4a2b
q

4bþa1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1þ4a2b
q

x2 ¼
2b

4bþa1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1þ4a2b
q ð26Þ

The condition that the y¼0 equilibrium is stable is f4b

ða1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1þ4a2b
q

Þ
2

2ð4bþa1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1þ4a2b
q

Þ

4b ð27Þ

If b¼ a1 this becomes a242a1. If b¼1 then the most realistic
scenario that we are interested to explore is a1o1 and a242. In
this case, the y¼0 equilibrium is stable if

b4
ð1�a1Þða2�2a1Þ

ða2�2Þ2
ð28Þ

Thus the success of CT depends on the ability b to find individuals
with which one can form aggregates. Note that unlike in the ST
case, in the CT case there is always a b that is large enough for
construction to prevail, provided that a242.

4. Discussion of ST versus CT

Although our treatment of CT in this paper is preliminary, in
principle CT can allow the aggregation of different types (either
individuals of the same species employing different strategies, or
even individuals of different species as is for example the case in
endosymbiosis). Thus unlike ST which is a clonal process (in the
absence of mutation or sex), CT allows for the formation of
complexes with varying degrees of relatedness. When the aggre-
gates are formed by different types coming together, the CT
equations can be interpreted as describing evolutionary game
dynamics (Hofbauer and Sigmund, 1998) of multi-person games.
The units in a complex are engaged in an interaction which
generates payoff. The population contains game playing groups of
different sizes. Solitary individuals represent loners. Thus, CT
leads into a complexity comparable to all of evolutionary game
theory; we believe this has to be explored in many subsequent
studies.

Our mathematical approach differs from standard coagula-
tion–fragmentation theory (CFT), which studies the formation and
breaking-up of clusters formed by individual molecules, cells or
animals (Gueron, 1998; Gueron and Levin, 1995; Gueron et al.,
1996; Okubo, 1986). In contrast to CFT, we consider reproduction
of individual units. The offspring can either stay with their cluster
(staying together) or join other clusters (coming together).
Furthermore, we study competition (natural selection) between
reproductive strategies that have the ability to form clusters and
those that do not. It would be of interest to explore extended CFT
models that contain these additional operations.

ST leads to linear selection equations, while CT generates
nonlinear equations which resemble aspects of evolutionary
game dynamics. Once construction has been achieved by either
one or both of those mechanisms, complex behavior like specia-
lization of different units will follow. Our framework can be
employed to study these subsequent steps, but here we focus
only on the origin of construction and how simple complexes can

Fig. 5. Natural selection of construction. We assume that complexes of inter-

mediate size have a fitness advantage. Complexes that are too small or too large

have a lower per capita reproductive rate than singletons. The curves represent

the equilibrium abundances of the xi and y, denoting respectively A and B. (a) For

ST we show equilibrium abundances as function of q, the probability of staying

together. For small and large values of q we observe that B wins because

complexes are either too small or too large. For intermediate values of q we

observe that A wins. The ST model used is the one discussed in Section 2.1 with

parameters ai ¼ 0:95i for i¼ 1,2,3; ai ¼ 2i for i¼ 4,: :,8 and ai ¼ 0:3i for all iZ9.

(b) For CT we show equilibrium abundances as a function of the rate of coming

together, b. If b is too small then B is selected. For intermediate values of b we

observe that A is selected. For larger values of b we observe a mixed equilibrium.

Note that the all-B equilibrium is always stable (not shown). Parameters: ai ¼ 1:7i

for i¼ 4,: :,8; and ai ¼ 0:5i for all other i. In both cases we assume that only

complexes of intermediate size have a reproductive rate (per unit) which is faster

than that of singletons, b¼1. This assumption represents the idea that there is a

cost of complex formation which is only overcome above a certain size, but large

complexes are again inefficient. Color code: green for xi with i¼4: :8 (from top to

bottom); blue for all other xi (i¼ 1,2,3,9,10, . . . from top to bottom); red for y;

equilibrium abundances are shown. (For interpretation of the references to color

in this figure caption, the reader is referred to the web version of this paper.)
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outcompete solitary life. Hence the crucial question that we want
to address is: under which conditions is A favored over B by
natural selection? The answer depends on the reproductive rates,
ai, which are an indicator of how much better or worse a complex
of size i is at producing new units compared to a solitary
individual, and on the parameters q and b which are the
respective rates of complex formation.

In this paper we do not make any assumptions about whether
the first constructive steps are beneficial or not. In fact, the more
interesting scenarios arise when one allows the first constructive
steps to be neutral ðai ¼ ibÞ or even detrimental ðaio ibÞ. However,
ultimately only if certain steps are actually beneficial (i.e. aio ib

for small i but ai4 ib for larger i), can natural selection promote A

over B and thereby favor the evolution of construction.
Since we so far studied only the case where competition is for

the same niche, for ST models we find competitive exclusion:
stable coexistence between A and B is not possible. This means
that for generic parameter values the system either converges to
all-A or all-B (Fig. 5a). Without the density limitation, the ST
system is a simple linear system with exponential growth. Thus,
intuitively coexistence is not possible. This property is preserved
even when we add the density limitation f. For CT we find that
multiple and mixed equilibria are possible. There can be stable
coexistence between A and B or competitive exclusion (Fig. 5b).

A non-generic situation is given by the reproductive rates
ai ¼ ib; in this case we find neutrality between A and B for both ST
and CT. This result is intuitive: if the individual units in all
complexes reproduce at the same rate as single units, then
complex formation has neither an advantage nor a disadvantage.
The emergence of complexes is then a consequence of neutral
drift. For the origin of multicellularity Bonner has argued that the
first step toward complex formation could have been neutral
drift, while subsequent mutations lead to cellular differentiation,
division of labor and discovery of new ecological niches (Bonner,
1998).

If there is a cost for the ability to form complexes in the sense
that a single A unit reproduces at a slower rate than a single B

unit, a1ob, then the all-B equilibrium is always stable under CT.
This is because CT requires the presence of others in order to form
complexes. Hence A can only evolve if an invasion barrier is
overcome: a rare A mutant must locally drift to a minimum
abundance before large enough complexes can arise which realize
any possible selective advantage of CT. The A units must have the
possibility to find each other. Note that a stochastic model would
be needed to describe the drift to overcome the invasion barrier.
The deterministic model that we look at only shows that there is
an invasion barrier: the abundance of A can only increase if it
starts above a critical threshold. In contrast, for ST the all-B

equilibrium can be unstable even if a1o1, which means that a
rare A mutant can be immediately favored by natural selection.
This is because each complex is formed by clonal reproduction
starting from a single individual.

In spite of this apparent ease of construction using ST, there
are many choices for the ai parameters that allow evolution of
construction for CT and not for ST. If, for instance, only large
complexes provide fitness advantages, then high b values can
facilitate the formation of such complexes via CT, but even the
limit q-1 could be insufficient for ST. The reason is that ST can be
too slow to form large complexes in a competitive setting: the
small ST complexes are outcompeted by B before they can reach
the critical size that would give them a fitness advantage.

Understanding the rates of complex formation, q and b,
requires an understanding of how they depend on environmental
conditions: complex formation can be favored in some environ-
ments and opposed in others. An example of ST where q depends
on the environment is provided by the unicellular alga Chlorella

vulgaris, which in the presence of a phagotrophic predatory
flagellate forms colonies that are nearly invulnerable to predation
(18). An example of CT for which b depends on the environment is
provided by the bacterium Bacillus subtilis, which under certain
stress conditions, like starvation or toxicity of the environment,
forms biofilms. Biofilm formation is a developmental process in
which bacteria undergo a regulated lifestyle switch from a
nomadic unicellular state to a sedentary multicellular state,
where subsequent growth results in structured communities
and cellular differentiation (Kolter, 2010).

Furthermore, different environments can facilitate CT or ST.
Bonner advanced the idea that ST is characteristic of multicellular
forms of aquatic origin, whereas CT is typical in terrestrially
derived lineages (Bonner, 1998). This could indeed be the case,
because an aquatic environment with currents would make it
difficult for units to find each other—thus b would be small and
CT inefficient. In the absence of CT, however, ST is the natural
solution. In terrestrial environments on the other hand, one can
assume that the density of similar types on a patch of soil is high,
which facilitates CT. In fact, in an environment where b is high
and CT is easy to achieve, ST might have a hard time to compete.
The reason is that complex formation via ST is slow when
compared to CT in a situation where the local concentration of
units is high.

5. Cooperation

Since both ST and CT require that several units function
together as part of a complex, cooperation is proposed as a major
factor in biological construction. We will show however that ST
and CT represent two very different types of cooperation. Coop-
eration is always vulnerable to exploitation. The tension between
cooperation and defection can be seen in our theory. Let us
discuss this problem in the context of evolution of multicellular-
ity. For ST a cell type could arise which does not contribute to the
benefit of the organism but exploits it to enhance its own
reproduction. Such a defecting, ‘cancerous’ cell undermines the
advantages of multicellularity. For CT, however, the typical
defector would be another cell type which participates in the
aggregation of cooperators and subsequently exploits them (28).
Here we find that our theory leads to basic aspects of evolutionary
game dynamics; in this context, cooperation has been shown to
evolve when certain mechanisms are in place (e.g. spatial struc-
ture, kin discrimination, group selection, reciprocity). For a dis-
cussion of these mechanisms see Nowak (2006). Thus, the
emergence of multicellularity via CT requires a mechanism for
the evolution of cooperation. Both ST and CT are discussed below.

5.1. ST

In the case of ST, there are many types of defection that we can
imagine. Below we consider two simplified scenarios: an unpro-
ductive mutant which in no way affects the complex and a lethal
mutant which kills the complex instantaneously. Any other type
of mutation will be in between these two scenarios in terms of
the amount of harm that it does to the complex.

5.1.1. Scenario 1: unproductive mutation

In this case, with probability u, a complex of size i produces a
mutant which reverts to solitary life. It breaks from the complex
and is unable to make complexes itself. In this case mutation is
not harmful to the complex but it is unproductive in the sense
that with a certain probability the complex produces solitary
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individuals.

Ai -
aiqð1�uÞ

Aiþ1

Ai -
aið1�qÞð1�uÞ

AiþA

Ai-
aiu

AiþB

B-
b

BþB ð29Þ

We can describe these reactions by the following system of
differential equations, where xi is the abundance of complex Ai

and y is the abundance of B.

_x1 ¼ ð1�uÞð1�qÞ
X

i

aixi�qð1�uÞa1x1�fx1

_xi ¼ qð1�uÞðai�1xi�1�aixiÞ�fxi

_y ¼ yðb�fÞþu
X

i

aixi ð30Þ

As before, f is chosen such that yþ
P

ixi ¼ 1. This implies that
f¼ byþ

P
aixi. We find the equilibrium f implicitly as

X
iZ1

Yi

j ¼ 1

qð1�uÞaj

fþqð1�uÞaj
¼

q

1�q
ð31Þ

The condition that x wins is f4b. For simplicity, let us assume
b¼1. Then f41 if

X
iZ1

Yi

j ¼ 1

qð1�uÞaj

1þqð1�uÞaj
4

q

1�q
ð32Þ

Let

gðuÞ ¼
X
iZ1

Yi

j ¼ 1

qð1�uÞaj

1þqð1�uÞaj
�

q

1�q
ð33Þ

This is a decreasing function of u on the interval ½0,1� and hence it
will have at most one zero in the interval 0rur1. The function
will have a zero in this interval if it has different signs when
evaluated at 0 and 1 respectively. gð1Þ ¼�q=ð1�qÞo0; now gð0Þ
gives the comparison between ST in the absence of mutation
(u¼0) and unicellularity. If gð0Þ40 then ST without mutation
wins, otherwise unicellularity wins. Since gð1Þo0, the polynomial
has one root in the interval ½0,1� only if gð0Þ40. Thus we find that
a necessary condition for ST with defection to be stable is that ST
without defection is stable. Moreover, we find that the condition
that ST wins over multicellularity is an error threshold condition:
the mutation rate has to be lower than a certain threshold (see
Fig. 6).

In particular, let us study the case where the maximum size of
a complex is n¼2. As before when studying what happens when a
cutoff is imposed (i.e. n¼2), the results obtained for the special
case are not the same as for the general case, where there is no
cutoff. In the case n¼2 we find that ST is stable under defection
only when

uo1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1ð�1þ2qÞ2þ4a1a2q
q

�a1ð�1þ2qÞ

2a1a2q
ð34Þ

Thus there exists an error threshold.

5.1.2. Scenario 2: lethal mutation

In this case, with probability u, a complex of size iZ2
produces a mutant which kills the entire complex. By itself, the
mutant reproduces at rate b.

Ai �!
aiqð1�uÞ

Aiþ1

Ai �!
aið1�qÞð1�uÞ

AiþA

Ai-
aiu

0 8iZ2

B-
b

BþB ð35Þ

We can describe these reactions by the following system of
differential equations, where xi is the abundance of complex Ai

and y is the abundance of B.

_x1 ¼ ð1�uÞð1�qÞ
X

i

aixi�qð1�uÞa1x1�fx1

_xi ¼ qð1�uÞðai�1xi�1�aixiÞ�fxi

_y ¼ yðb�fÞþuð1�qÞ
X

i

aixi ð36Þ

As before, f is chosen such that yþ
P

ixi ¼ 1. This implies that
f¼ byþ

P
aixi.

Note that the xi equations in this case are the same as for the
previous scenario. The only change is in the equations for y but
these do not affect our calculation. Hence, in the case of a lethal
mutation, we find the same condition (32) for multicellularity to
be stable under invasion by a lethal mutant.

However, the case n¼2 yields a different error threshold
(because the system of differential equations is different when a
cutoff is imposed), given by

uo1�
1

a1ð1þð�2þa2ÞqÞ
: ð37Þ

5.2. CT defection

Let A and D be two types which can form aggregates either
with their own type or with each other. The reactions below
describe the formation of these aggregates. The relationships
between the reaction rates will determine the relationships
between A and D. In this section we want to consider the situation
when D is a defector which takes advantage of A. We will describe
below in what ways this can be achieved.

AiDjþA-
b

Aiþ1Dj

AiDjþD-
b

AiDjþ1

AiDj-
aij

AiDjþA

AiDj-
dij

AiDjþD

D-
b

2D ð38Þ

Fig. 6. An error threshold condition determines whether ‘cooperators’ or ‘defec-

tors’ win in this ST model. We use the standard ST framework, but assume that an

A unit can mutate into a B unit at rate u. The B unit leaves the complex and starts

solitary reproduction. If the mutation rate is small enough, there is a mixed

equilibrium (a mutation-selection balance). If the mutation rate exceeds a critical

value, which here is approximately given by uc � 0:0081, then A becomes extinct.

Fitness landscape: ai ¼ 0:95i for i¼ 1,2,3; ai ¼ 2i for i¼ 4,: :,8 and ai ¼ 0:3i for all

iZ9. The probability of staying together is q¼0.3. Color code: green for xi with

i¼4: :8; blue for xi with i¼ 1,2,3,9,10 . . . (from top to bottom); red for y;

equilibrium abundances are shown as function of the mutation rate. (For

interpretation of the references to color in this figure caption, the reader is

referred to the web version of this paper.)
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D is a defector which exploits A as follows:

� the rate at which an AiDj complex produces more As is slower
the more Ds there are in the complex (ai,j4ai,jþ1 for all iZ1
and jZ0);
� the rate at which an AiDj complex produces more Ds is higher

the more As there are in the complex (di,jodiþ1,j for all iZ0
and jZ1);
� the rate at which an AiDj complex produces As is slower than

the rate at which it produces Ds (di,j4ai,j for all iZ1, jZ1).

One would expect such a defector D to outperform A. In such a
situation, the survival of cooperation will depend on the existence
of mechanisms that support the evolution of cooperation. More-
over, note that if we consider individual units as players in a
game, then a complex of size i corresponds to a group of i

individuals involved in a game interaction. Thus our theory
naturally captures n-player games (Gokhale and Traulsen, 2010,
2011; Hauert et al., 2002, 2006; van Veelen and Nowak, 2012). It
is usually the case in theory that interactions are instantaneous;
here the complexes have certain lifetimes and hence individuals
are involved in a particular interaction for a certain amount of
time. This prevents them from being involved in other
interactions.

If we moreover allow the existence of single units B which are
unable to form complexes, then we are in the realm of n-player
games with loners. Since B cannot participate to the formation of
complexes, it means it cannot participate in an interaction and
hence cannot play the game. For certain fitness landscapes, we
can assume that A outperforms B (one requirement would be that
aiþ1,0Zai,04a1,0 for all iZ2) and B outperforms D. Thus A, D and
B could be involved in a cyclic relationship which can allow the
coexistence of the three types.

5.2.1. Example n¼2

Let us consider a simple example of defection for the case in
which complexes can reach at most size 2 and the defector D

cannot form complexes with its own kind. Thus, D is an individual
which can come together with an A individual and form a
complex AD; this complex will only produce Ds. So D is a defector
in the sense that it hijacks As ability to form complexes to
produce more of itself. The reactions that describe the dynamics
are

A-
a1

AþA

AþA-
b

AA

AA-
a2

AAþA

AþD-
b

AD

A-
a3

ADþD

D-
b

DþD ð39Þ

The equations that describe this dynamics are

_x1 ¼ a1x1þa2x2�2bx2
1�bx1y�fx1

_x2 ¼ bx2
1�fx2

_x3 ¼ bx1y�fx3

_y ¼ a3x3þby�bx1y�fy ð40Þ

One question we want to ask is when y cannot invade the x

equilibrium. For that, we calculate the x equilibrium as in Section
3.1 and ask when the linear system formed by x3 and y has
negative eigenvalues at that equilibrium. In other words, if we
sprinkle some defectors at the equilibrium, we want them to not
grow. We then find the condition for CT to be stable under
invasion by the type of defector discussed above to be a lower

bound on b. If b is greater than a certain function of the
parameters of the model, then CT is stable.

6. Discovery of a new niche

So far we have only analyzed the case where the solitary units
and the complexes compete for the same ecological niche.
However, one of the advantages of complex formation is the
possibility to explore new niches. For example, in the case of
multicellularity, an increase in size would allow an escape from
phagotrophic predation (Boraas et al., 1998; Stanley, 1973); but
even in the absence of predation, increased size could provide
advantages such as the discovery of novel metabolic opportu-
nities (Pfeiffer and Bonhoeffer, 2003). Moreover, multicellularity
can allow the emergence of cellular differentiation and division of
labor. Some cells in the multicellular complex could adopt
different functions and thereby make it possible for the organism
to explore new ecological niches. This can have a profound
impact. For example, we argued above that if there is only one
niche, then the choice of ai ¼ ib for the reproductive rates is
neutral. However, one can easily envisage a situation where
complexes of size i are as productive as i solitary individuals,
but they manage to inhabit a new ecological niche and are
therefore selected. For example, the freshwater green alga Scene-

desmus acutus is unicellular in lab cultures, but if exposed to
water that contains its predator Daphnia, it starts to form colonies
by staying together—when it divides, it retains the daughter cells
within the cell walls. The multicellular alga grows and photo-
synthesizes at the same rate as the unicells, but it sinks more
rapidly, thereby avoiding predation (Grosberg and Strathmann,
2007).

In this section we investigate the possibility that large com-
plexes discover a new niche. This means that from a certain size
upwards, complexes discover a new niche which changes the
nature of the competition with B, which is inhabiting the old
niche. We will analyze this scenario for both ST and for ST with
chain breaking and conclude that it has the interesting property
that rather inefficient complex organisms can successfully com-
pete with their solitary ancestors, if those are limited to the
original niche. The complex organisms would lose the competi-
tion in the original niche, but prevail over all by discovering the
new niche. In this setting coexistence between complex and
solitary is possible (Fig. 7).

6.1. ST

The equations that describe the discovery of a new niche in the
case of ST are

_x1 ¼ ð1�qÞ
X1
i ¼ 1

aixici�qa1x1c1�dx1

_xi ¼ qðai�1xi�1ci�1�aixiciÞ�dxi i¼ 2,3, . . .

_y ¼ yðbc0�dÞ ð41Þ

where

ci ¼

1 1þZ
Xn

j ¼ 1

jxj

2
4

3
5,

for i¼ 0,1, . . . ,n

1 1þZ
X1

j ¼ nþ1

jxj

2
4

3
5,

for i¼ nþ1,nþ2, . . .

8>>>>>>><
>>>>>>>:

ð42Þ

is the density limitation. The c determines who competes with
whom: the first n complexes compete with B because they are in
the same niche, whereas the complexes from size nþ1 upwards
are in a niche of their own.
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Notice that in this section we omit the kinetic equations. This
is because they are identical to the ones for ST. The only way in
which the discovery of a new niche is reflected is in the density
limitation and that is not represented in the kinetic equations.

We performed simulations (Fig. 7) for the fitness landscape:
b¼1, ai ¼ 0:8i for ir50 and ai¼40 for i450. Thus, for this
landscape, the first 50 complexes are worse than singletons and
all others from size 51 onwards have constant reproductive rate.
We find that there exist 5 regions depending on the rate q of
complex formation. If q is too small, then complexes never grow
fast enough to discover the new niche. If q is too large then very
large complexes are being produced, which is inefficient (because
after size 50, increasing the size does not yield more productiv-
ity). Intermediate values of q allow for either the dominance of ST
or for a mixed equilibrium between ST and singletons. The
coexistence is possible because of the two niches.

6.2. A simple analytical model

We can analytically study a simplified system where com-
plexes only reach size 2. Here A1 and B compete for the old niche
while A2 discovers a new niche.

_x1 ¼ a1x1ð1�2qÞc1þa2x2c2�dx1

_x2 ¼ a1qx1c1�dx2

_y ¼ yðbc1�dÞ ð43Þ

where c1 ¼ 1=ð1þZðx1þyÞÞ and c2 ¼ 1=ð1þZx2Þ.
Without loss of generality, let us assume b¼1. We want to find

the regions of mixed equilibrium; solving for the equilibrium, we
impose the condition that x140, x240 and y40 and find these
to be equivalent to q0oqoq1 and q2oqo1 where

q0 ¼
dð1�a1Þ

a1ða2�2dÞ
ð44Þ

and q1 and q2 are the two roots of the quadratic equation

2a2
1ð1�dÞq2þqa1ð1�a1þdþa1d�a2Þþdð1�a1Þ ¼ 0 ð45Þ

All three critical values exist and are positive if a1o1 and a242.
In this case we find only three critical values (hence only four
parameter regions). These regions are the same as in our general
simulations above, except that we are missing the last region—for
this simple model large values of q still allow coexistence
because, unlike before, large inefficient complexes do not exist
(complexes of size 2 are not inefficient).

7. Conclusion

In summary, we have proposed a simple mathematical frame-
work that allows us to study the evolution of construction in
biology. Our theory rests on two basic operations, staying
together and coming together, which represent different routes
for the evolution of complexity. We argue that these operations
are crucially involved at all levels of construction – in the
formation of protocells, eukarya, multi-cellular organisms and
animal societies – and moreover that they are very distinct
mechanisms facing distinct challenges. These differences become
very clear when we discuss the problem of cooperation and
defection. In both operations we feel the tension between ‘the
constructive capabilities of cooperation and the dissipative forces
of selfishness’ (Krakauer, 2011) but they manifest themselves in
different form. ST leads to linear selection equations and the
condition for evolution of cooperation is a mutation threshold. CT
is an evolutionary game and a specific mechanism for the
evolution of cooperation is needed. In both cases the complexes
that are being formed can exploit new niches and evolve division
of labor.

Both ST and CT have been discussed previously, but they have
been treated within the same multilevel selection approach
(Michod, 2007). We suggest that there is a significant difference
between these two operations and what can be achieved through
them. True CT means that the units that are coming together
could be genetically diverse (not of a clonal origin), which
immediately leads to a conflict of interest (cooperation versus
defection). This conflict can be resolved through multilevel selec-
tion or other mechanisms for the evolution of cooperation
(Nowak, 2006). In contrast, ST leads to genetic diversity only
because of mutations that might occur during the growth of the
aggregate. In the absence of these mutations the daughter cells
are not independent units with independent interests that need
to be aligned, and consequently there is no multilevel selection
for ST. Thus, the origin of ST, in the sense of competing A (which
does ST) versus B (which is solitary) is not a multi-level selection
problem. Similarly, competing different ST strategies is again not
a multi-level selection problem.

Finally, we propose that CT without ST does not lead to the
formation of higher-level individuals. ST is the essential mechan-
ism for achieving this step. An organism that always needs CT in
order to form multicellularity can never fully resolve the tension
arising from different types, with different interests. What is
ultimately needed for the evolution of complex multicellularity is
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Fig. 7. Discovery of a new niche via staying together. (a) Complexes of size

i¼ 1, . . . ,4 compete with the unicellular ancestor in the original niche. Complexes

of size iZ5 populate a new niche (with separate density regulation).

(b) Simulation results: the evolutionary outcome depends on the probability of

staying together, q. The curves from top to bottom represent the equilibrium

abundances of x1 through xn. The blue curves are the complexes that share the

same niche as the solitary ancestors (red); the green curves are the complexes that

have discovered a new niche. We obtain the following equilibria: for qo0:11 all-B

is stable, for 0:11oqo0:16 there is a mixed equilibrium, for 0:16oqo0:42 all-A

is stable, for 0:42oqo0:98 there is again a mixed equilibrium between A and B,

for 0:98oq all-B is stable. In this ST model coexistence is possible because of the

presence of two niches. Fitness landscape: ai ¼ 0:8i for i¼ 1,: :,50 and ai¼40 for all

iZ50. Thus A has an intrinsically lower reproduction rate than B; it is only

selected because of the new niche. Color code: blue for xi with i¼1: :4 and green

for xi with iZ5 (both are ordered from top to bottom); red for y. (For interpreta-

tion of the references to color in this figure caption, the reader is referred to the

web version of this paper.)
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for CT to be replaced by ST. An interesting complication arises if
one considers that sexual reproduction can be seen as a form of
CT. Sexual reproduction has the typical CT features of generating
novel outcomes (creativity) and leading to tensions - as in game
dynamical situations (Haig, 2002; Hofbauer and Sigmund, 1998).
On the other hand sexual reproduction is a special type of CT,
because two cells fuse and give rise to one unit, which helps to
suppress conflicts of interests. An empirical classification of
various types of CT and ST, how they are employed for construc-
tion and what can be achieved with either of them is an
interesting avenue for future research.
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Appendix A. Exploring different density limitations and death
rates

Our choice f for the density limitation affects the death rate of
complexes. Another option is to consider a density limitation that
affects the birth rates, similar to the one we introduced for the
discovery of a new niche. Thus consider the following system:

_x1 ¼ ð1�qÞ
X

i

aicxi�qa1cx1�d1x1

_xi ¼ qðai�1cxi�1�aicxiÞ�dixi i¼ 2,3, . . .

_y ¼ yðbc�dÞ ð46Þ

where c¼ 1=½1þZðyþ
P

iixiÞ� and Z is a constant. The density
limitation in this system becomes a limitation on the birth rate
rather than on the death rate; the birth rate for each complex is
multiplied by the same constant c. The larger the population, the
fewer individuals of each type will be born. We find c implicitly
as before to be given by

1�q

q

X
iZ1

Yi

j ¼ 1

cqaj

djþcqaj

¼ 1 ð47Þ

The condition that A wins is equivalent to cod=b which becomes

1�q

q

X
iZ1

Yi

j ¼ 1

d

b
qaj

djþ
d

b
qaj

41 ð48Þ

In particular, if di ¼ d for all i, then the condition that A wins is

1�q

q

X
iZ1

Yi

j ¼ 1

qaj

bþqaj

41 ð49Þ

which is the same as condition (6) found for the f density
limitation. Thus, using the c density limitation leads to the same
competitive exclusion conclusion and for di ¼ d, it leads to the
same condition. Of course, other density limitations can and
should be explored, especially when the framework is applied
to study a particular system; but we hope that this analysis shows
that at least some of the main conclusions are unaffected by the
choice of density limitation.

Appendix B. Neutrality for ai ¼ ib

In our discussion of ST we argued that the fitness landscape
ai ¼ ib is neutral; there we defined neutrality to mean that f¼ b

which we showed to hold for any y and xi if ai ¼ ib. Here we make
that statement stronger, by showing that we can actually find a
family of equilibria for which f¼ 1. We will do the calculation for
ST with chain breaking because it is more interesting, but the
same principle applies for all types of ST.

Write xk ¼ ukx1 for all k41 and x1 ¼ x. Moreover, write
u ¼

P
kZ2uk. Then the equilibrium conditions for the system

(12) are

1¼ cu

3ð1þcÞu2 ¼ 1þ2cu

ð1þcÞðkþ1Þuk ¼ ðk�1Þuk�1þ2c u�
X

2r jok

uj

0
@

1
A ð50Þ

The solution to this system can be easily shown by induction to be
uk ¼ ð1=ð1þcÞÞk�1 for kZ2. To see that this is so, note that the
middle equation from above gives u2 ¼ 1=ð1þcÞ. Assuming that
uk ¼ ð1=ð1þcÞÞk�1 for all kon with nZ3, then from the third
equation above we find

un ¼
n�1

nþ1

1

1þc

� �n�1

þ
2

nþ1

1

1þc
1�c

X
1rkon�2

1

1þc

� �k
 !

¼
n�1

nþ1

1

1þc

� �n�1

þ
2

nþ1

1

1þc

� �n�1

¼
1

1þc

� �n�1

ð51Þ

It is easy to check that f¼
P

kakxk ¼
P

kð1=ð1þcÞÞk�1
¼ 1. Thus,

we have found a family of equilibria xk ¼ ukx which are neutral.
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