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COMPUTATIONAL VERIFICATION OF THE BIRCH

AND SWINNERTON-DYER CONJECTURE

FOR INDIVIDUAL ELLIPTIC CURVES

GRIGOR GRIGOROV, ANDREI JORZA, STEFAN PATRIKIS, WILLIAM A. STEIN,
AND CORINA TARNIŢǍ

Abstract. We describe theorems and computational methods for verifying
the Birch and Swinnerton-Dyer conjectural formula for specific elliptic curves
over ℚ of analytic ranks 0 and 1. We apply our techniques to show that if 𝐸
is a non-CM elliptic curve over ℚ of conductor ≤ 1000 and rank 0 or 1, then
the Birch and Swinnerton-Dyer conjectural formula for the leading coefficient
of the 𝐿-series is true for 𝐸, up to odd primes that divide either Tamagawa
numbers of 𝐸 or the degree of some rational cyclic isogeny with domain 𝐸.
Since the rank part of the Birch and Swinnerton-Dyer conjecture is a theorem
for curves of analytic rank 0 or 1, this completely verifies the full conjecture
for these curves up to the primes excluded above.

1. Introduction

Let 𝐸 be an elliptic curve over ℚ. The 𝐿-function 𝐿(𝐸, 𝑠) of 𝐸 is a holomorphic
function on ℂ that encodes deep arithmetic information about 𝐸. This paper is
about a conjecture of Birch and Swinnerton-Dyer that describes a deep connection
between the behavior of 𝐿(𝐸, 𝑠) at 𝑠 = 1 and the arithmetic of 𝐸.
We use theorems and computation to attack the following conjecture for many

specific elliptic curves of conductor ≤ 1000 (see Section 1.1 below for more about
the notation used in the conjecture):

Conjecture 1.1 (Birch and Swinnerton-Dyer). Let 𝐸 be an elliptic curve defined
over ℚ. Then

(1) The order of vanishing ord𝑠=1 𝐿(𝐸, 𝑠) equals the rank 𝑟 of 𝐸.
(2) The group Ш(𝐸) is finite, and

𝐿(𝑟)(𝐸, 1)

𝑟!
=
Ω𝐸 ⋅ Reg𝐸 ⋅∏𝑝 𝑐𝑝 ⋅#Ш(𝐸)

(#𝐸(ℚ)tor)2
,

where Ш(𝐸) is the Shafarevich-Tate group, Ω𝐸 is the real period, the 𝑐𝑝
are the Tamagawa numbers at the primes 𝑝 of bad reduction, and 𝐸(ℚ)tor
is the torsion subgroup of 𝐸(ℚ).
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For more about Conjecture 1.1, see [Lan91, Wil00] and the papers they reference.
Henceforth we call it the BSD conjecture, and call (1) the first part of the BSD
conjecture and (2) the second part of the BSD conjectural formula.

Definition 1.2 (Analytic Ш). If 𝐸 has rank 𝑟, let

#Ш(𝐸)an =
𝐿(𝑟)(𝐸, 1) ⋅ (#𝐸(ℚ)tor)2
𝑟! ⋅ Ω𝐸 ⋅ Reg𝐸 ⋅∏𝑝 𝑐𝑝

denote the order of Ш(𝐸) predicted by Conjecture 1.1. We call this the analytic
order of Ш(𝐸).

Conjecture 1.3 (BSD(𝐸, 𝑝)). Let (𝐸, 𝑝) denote a pair consisting of an elliptic
curve 𝐸 over ℚ and a prime 𝑝. Assume that 𝐸 satisfies the first part of the BSD
conjecture and moreover that #Ш(𝐸)an is a rational number (see Remark 1.7 be-
low). We call the assertion that Ш(𝐸)[𝑝∞] is finite and that

ord𝑝(#Ш(𝐸)[𝑝∞]) = ord𝑝(#Ш(𝐸)an)

the BSD conjecture at 𝑝, and denote it by BSD(𝐸, 𝑝).

We emphasize that whenever we write BSD(𝐸, 𝑝), we are assuming that the first
part of the BSD conjecture is true for 𝐸.
Cassels proved that the truth of the BSD conjecture is invariant under isogeny.

Theorem 1.4 (Cassels). If 𝐸 and 𝐹 are ℚ-isogenous and 𝑝 is a prime, then
BSD(𝐸, 𝑝) is true if and only if BSD(𝐹, 𝑝) is true.

Proof. See [Cas65, Mil86, Jor05]. □

One way to give evidence for the conjecture is to compute #Ш(𝐸)an and note
that it is a perfect square, in accord with the following theorem:

Theorem 1.5 (Cassels). If 𝐸 is an elliptic curve over ℚ and 𝑝 is a prime such
that Ш(𝐸)[𝑝∞] is finite, then #Ш(𝐸)[𝑝∞] is a perfect square.

Proof. See [Cas62, PS99]. □

We use the notation of [Crea] to refer to specific elliptic curves over ℚ. We call
the first elliptic curve in each isogeny class optimal (see Definition 1.12 below for
more about why).

Conjecture 1.6 (Birch and Swinnerton-Dyer ≤ 1000). For all optimal curves of
conductor ≤ 1000 and rank ≤ 1, we have #Ш(𝐸) = 1, except for the following four
rank 0 elliptic curves, where Ш(𝐸) has the indicated order:

Curve 571a 681b 960d 960n
#Ш(𝐸) 4 9 4 4

Remark 1.7. A subtle point is that there is currently no elliptic curve of rank 2
(or larger) for which it is known that #Ш(𝐸)an is a rational number. To prove
rationality of #Ш(𝐸)an in any example would require proving a deep relationship
between the real numbers 𝐿(2)(𝐸, 1), Ω𝐸 and Reg𝐸 , perhaps analogous to the Gross-
Zagier theorem in the case of analytic rank 1. That said, Cremona has computed
#Ш(𝐸)an to several digits precision for the curves of rank ≥ 2 with conductor
≤ 1000, and in each case #Ш(𝐸)an is 1.0000 . . ..
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Theorem 1.8. Conjecture 1.1 is true for all elliptic curves of conductor ≤ 1000
and rank ≤ 1 if and only if Conjecture 1.6 is true.
Proof. By Theorem 1.4 it suffices to consider only the optimal curves, and the four
listed in Conjecture 1.6 are the only ones with nontrivial #Ш(𝐸)an. This assertion
about #Ш(𝐸)an is verified by computation, as explained below.
In the book [Cre97], Cremona used modular symbols to compute #Ш(𝐸)an as

an exact integer for every curve of rank 0 and conductor ≤ 1000. For the curves of
rank 1, Cremona computed a numerical approximation to #Ш(𝐸)an to at least 10
digits of precision. Using the Gross-Zagier formula (see (3.2)) we obtain an explicit
formula for #Ш(𝐸)an that shows that #Ш(𝐸)an is a rational number with bounded
denominator. We explicitly computed such a bound for all curves of rank 1 and
conductor ≤ 1000 and it was at most 5248800, which is much smaller than 1010.
Thus #Ш(𝐸)an = 1 for each elliptic curve of rank 1 and conductor ≤ 1000. □

In view of Theorem 1.8, the main goal of this paper is to obtain results in support
of Conjecture 1.6. The results of Section 4.2 below together imply the theorem we
claimed in the abstract:

Theorem 1.9. Suppose that 𝐸 is a non-CM elliptic curve of rank ≤ 1, conductor
≤ 1000 and that 𝑝 is a prime. If 𝑝 is odd, assume further that the mod 𝑝 represen-
tation 𝜌𝐸,𝑝 is irreducible and 𝑝 does not divide any Tamagawa number of 𝐸. Then
BSD(𝐸, 𝑝) is true.

Proof. Combine Theorem 3.31, Theorem 3.25, and Theorem 4.4. □

For example, if 𝐸 is the elliptic curve 37a, then according to [Cre97], all 𝜌𝐸,𝑝 are
irreducible and the Tamagawa numbers of 𝐸 are 1. Thus Theorem 1.9 asserts that
the full BSD conjecture for 𝐸 is true.
There are 18 optimal curves of conductor ≤ 1000 of rank 2 (and none of rank

> 2). For these 𝐸 of rank 2, nobody has proved that Ш(𝐸) is finite in even a
single case. We exclude CM elliptic curves from most of our computations. The
methods for dealing with both parts of the BSD conjecture for CM elliptic curves
are different than for general curves; methods for the second part will be the subject
of another paper. The same is true for BSD(𝐸, 𝑝) when 𝜌𝐸,𝑝 is reducible, where we
attack this problem theoretically in a forthcoming paper by Stein and Wuthrich,
and later apply the theory in a further paper.

1.1. Notation and background. If 𝐺 is an abelian group, let 𝐺tor denote the
torsion subgroup and 𝐺/ tor denote the quotient 𝐺/𝐺tor. For an integer 𝑚, let 𝐺[𝑚]
be the kernel of multiplication by 𝑚 on 𝐺. For a commutative ring 𝑅, we let 𝑅∗

denote the group of units in 𝑅.

1.1.1. Galois cohomology of elliptic curves. For a number field 𝐾, let 𝐺𝐾 =
Gal(ℚ/𝐾). Let 𝐸 be an elliptic curve defined over a number field 𝐾, and con-
sider the first Galois cohomology group H1(𝐾,𝐸) = H1(𝐺𝐾 , 𝐸(𝐾)), and the local
Galois cohomology groups H1(𝐾𝑣, 𝐸) = H

1(Gal(𝐾𝑣/𝐾𝑣), 𝐸(𝐾𝑣)), for each place 𝑣
of 𝐾.

Definition 1.10 (Shafarevich-Tate group). The Shafarevich-Tate group

Ш(𝐸/𝐾) = Ker
(
H1(𝐾,𝐸)→

⊕
𝑣

H1(𝐾𝑣, 𝐸)
)
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of 𝐸 measures the failure of global cohomology classes to be determined by their
localizations at all places.

If 𝐸 is an elliptic curve over a field 𝐹 and if the field 𝐹 is clear from the context,
we write Ш(𝐸) = Ш(𝐸/𝐹 ). For example, if 𝐸 is an elliptic curve over ℚ, then
Ш(𝐸) means Ш(𝐸/ℚ).

Definition 1.11 (Selmer group). For each positive integer 𝑚, the 𝑚-Selmer group
is

Sel(𝑚)(𝐸/𝐾) = Ker
(
H1(𝐾,𝐸[𝑚])→

⊕
𝑣

H1(𝐾𝑣, 𝐸)
)
.

The Selmer group relates the Mordell-Weil and Shafarevich-Tate groups of 𝐸 via
the exact sequence

0→ 𝐸(𝐾)/𝑚𝐸(𝐾)→ Sel(𝑚)(𝐸/𝐾)→ Ш(𝐸/𝐾)[𝑚]→ 0,

where Ш(𝐸/𝐾)[𝑚] denotes the 𝑚-torsion subgroup of Ш(𝐸/𝐾). Note that every
element of Ш(𝐸/𝐾) has finite order since every element of H1(𝐾,𝐸) has finite
order.

1.1.2. Elliptic curves over ℚ. See [Sil92, pp. 360–361] for the definition of 𝐿(𝐸, 𝑠)
and [Wil95, BCDT01] for why 𝐿(𝐸, 𝑠) is entire.
Let 𝐸 be an elliptic curve over ℚ. As mentioned above, we use the notation of

[Crea] to refer to elliptic curves over ℚ. Thus, e.g., 37b3 refers to the third elliptic
curve in the second isogeny class of elliptic curves of conductor 37, i.e., the curve
𝑦2 + 𝑦 = 𝑥3 + 𝑥2 − 3𝑥 + 1. The ordering of isogeny classes and curves in isogeny
classes is as specified in [Crea]. If the last number is omitted, it is assumed to be 1,
so 37b refers to the first curve in the second isogeny class of curves of conductor 37.
Let Reg𝐸 be the absolute value of the determinant of the canonical height pairing

on 𝐸(ℚ)/ tor. Let 𝑐𝑝 = [𝐸(ℚ𝑝) : 𝐸0(ℚ𝑝)] be the Tamagawa number of 𝐸 at 𝑝, where
𝐸0(ℚ𝑝) is the subgroup of points that reduce to a nonsingular point modulo 𝑝. Let
Ω𝐸 =

∫
𝐸(ℝ)

∣𝜔∣, where 𝜔 = 𝑑𝑥/(2𝑦+ 𝑎1𝑥+ 𝑎3) is the invariant differential attached

to a minimal Weierstrass model

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥+ 𝑎6

for 𝐸.
For any prime 𝑝, let 𝜌𝐸,𝑝 : 𝐺ℚ → Aut(𝐸[𝑝]) denote the mod 𝑝 representation and

𝜌𝐸,𝑝 : 𝐺ℚ → Aut(𝑇𝑝𝐸) the representation on the 𝑝-adic Tate module 𝑇𝑝𝐸 of 𝐸.
It follows from [BCDT01] that every elliptic curve 𝐸 over ℚ is modular, i.e., is

a quotient of the modular curve 𝑋0(𝑁), where 𝑁 is the conductor of 𝐸.

Definition 1.12 (Optimal). An elliptic curve 𝐸 over ℚ is optimal if for every
elliptic curve 𝐹 and surjective morphism 𝑋0(𝑁)→ 𝐹 → 𝐸, we have 𝐸 ∼= 𝐹 .

Optimal curves are also called “strong Weil curves” in the literature, and they
are always the first curve listed in each isogeny class in the Cremona tables [Crea].
We say that 𝐸 is a complex multiplication (CM) curve if End(𝐸/ℚ) ∕= ℤ.

2. Elliptic curve algorithms

2.1. Images of Galois representations. Let 𝐸 be an elliptic curve over ℚ. Many
theorems that provide explicit bounds on #Ш(𝐸)[𝑝∞] have as a hypothesis that
𝜌𝐸,𝑝 or 𝜌𝐸,𝑝 be either surjective or irreducible. In this section we explain how to
prove that 𝜌𝐸,𝑝 or 𝜌𝐸,𝑝 is surjective or irreducible in particular cases.
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2.1.1. Irreducibility. Regarding irreducibility, note that 𝜌𝐸,𝑝 is irreducible if and
only if there is no isogeny 𝐸 → 𝐹 over ℚ of degree 𝑝. The degrees of all such isoge-
nies for curves of conductor ≤ 1000 are recorded in [Cre97], which were computed
using Cremona’s program allisog. This program uses results of Mazur [Maz78]
along with computations involving modular curves of genus 0.

2.1.2. Surjectivity. We discuss surjectivity of the 𝑝-adic representation 𝜌𝐸,𝑝 and the
mod 𝑝 representation 𝜌𝐸,𝑝 in the rest of this section.

Theorem 2.1 (Mazur). If 𝐸 is semistable and 𝑝 ≥ 11, then 𝜌𝐸,𝑝 is surjective.
Proof. See [Maz78, Thm. 4]. □

Example 2.2. Mazur’s theorem implies that the representations 𝜌𝐸,𝑝 attached to
the semistable elliptic curve 𝐸 = 𝑋0(11) are surjective for 𝑝 ≥ 11. In fact 𝜌𝐸,5 is
reducible and all other 𝜌𝐸,𝑝 for 𝑝 ∕= 5 are surjective.
Theorem 2.3 (Cojocaru, Kani, and Serre). If 𝐸 is a non-CM elliptic curve of
conductor 𝑁 , and

𝑝 ≥ 1 + 4
√
6

3
⋅𝑁 ⋅

∏
prime ℓ∣𝑁

(
1 +

1

ℓ

)1/2
,

then 𝜌𝐸,𝑝 is surjective.

Proof. See Theorem 2 of [CK], whose proof relies on the results of [Ser72]. □

Example 2.4. When 𝑁 = 11, the bound of Theorem 2.3 is ∼ 38.52. When
𝑁 = 997, the bound is ∼ 3258.8. For 𝑁 = 40000, the bound is ∼ 143109.35.
Proposition 2.5. Let 𝐸 be a non-CM elliptic curve over ℚ of conductor 𝑁 and
let 𝑝 ≥ 5 be a prime. For each prime ℓ ∤ 𝑝 ⋅𝑁 with 𝑎ℓ ∕≡ 0 (mod 𝑝), let

𝑠(ℓ) =

(
𝑎2ℓ − 4ℓ

𝑝

)
∈ {0,−1,+1},

where the symbol
( ⋅
⋅
)
is the Legendre symbol. If −1 and +1 both occur as values

of 𝑠(ℓ), then 𝜌𝐸,𝑝 is surjective. If Im(𝜌𝐸,𝑝) is contained in a Borel subgroup (i.e.,
reducible), then 𝑠(ℓ) ∈ {0, 1} for all ℓ, and if Im(𝜌𝐸,𝑝) is a nonsplit torus, then
𝑠(ℓ) ∈ {0,−1} for all ℓ.
Proof. This proposition follows from the proof of Proposition 19 [Ser72, §2.8], where
we use the quadratic formula to convert the condition that certain polynomials mod-
ulo 𝑝 be reducible or irreducible into the above quadratic residue symbol condition.
The only thing one needs to add is that case iii) does not concern us because
the image of the Galois representation cannot be one of the exceptional groups
(this is mentioned in the introduction [Ser72, p. 261] and at the end of [Ser72,
§4.2.b)]). □

For computational applications we apply Proposition 2.5 as follows. We choose a
bound 𝐵 and compute values 𝑠(ℓ); if both −1 and +1 occur as values of 𝑠(ℓ), we stop
computing 𝑠(ℓ) and conclude that 𝜌𝐸,𝑝 is surjective. If for all ℓ ≤ 𝐵 we find that
𝑠(ℓ) ∈ {0, 1}, we suspect that Im(𝜌𝐸,𝑝) is Borel, and attempt to show this, which
is a finite computation (see Section 2.1.1). If for all ℓ ≤ 𝐵, we have 𝑠(ℓ) ∈ {0,−1},
we suspect that Im(𝜌𝐸,𝑝) is contained in a nonsplit torus, and we try to show this
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by computing and analyzing the 𝑝-division polynomial of 𝐸. If this approach is
inconclusive, we can always increase 𝐵 and eventually the process terminates. We
often apply some theorem under the hypothesis that 𝜌𝐸,𝑝 is surjective, which is
something that in practice we verify for a particular 𝑝 using Proposition 2.5.
Example 2.4 suggests that the bound of Theorem 2.3 is probably far larger than

necessary. Nonetheless, it is small enough that in a reasonable amount of time we
can determine whether 𝜌𝐸,𝑝 is surjective, using the above process, for all 𝑝 up to
the bound.
For 𝑝 ≤ 3 we can also determine surjectivity of the mod 𝑝 representations by

directly using the 𝑝-division polynomial of 𝐸.

Proposition 2.6. Let 𝑝 = 2, 3. Then 𝜌𝐸,𝑝 is surjective if and only if the 𝑝-division
polynomial (of degree 𝑝+ 1) has Galois group the full symmetric group 𝑆𝑝+1.

Proof. Fix a choice 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 of a (short) Weierstrass equation for 𝐸. We
take division polynomials relative to this fixed choice of Weierstrass equation.
First suppose 𝑝 = 2. Since #GL2(𝔽2) = 6, the representation 𝜌𝐸,2 is surjective

onto GL2(𝔽2) if and only if ℚ(𝐸[2]) has degree 6. By definition, the 2-division
polynomial 𝑓(𝑥) is 4(𝑥3 + 𝑎𝑥 + 𝑏). Then 𝑦2 = 𝑓(𝑥)/4 is the Weierstrass equation
that we fixed for 𝐸, so the 𝑦-coordinates of the 2-torsion points with respect to this
equation are all 0. Thus ℚ(𝐸[2]) is the splitting field of the 2-division polynomial
𝑓(𝑥), which proves the proposition in the case 𝑝 = 2.
Next suppose that 𝑝 = 3. Then 𝑓(𝑥) = 3𝑥4 + 6𝑎𝑥2 + 12𝑏𝑥− 𝑎2 is the 3-division

polynomial of 𝐸. First assume that the Galois group of 𝑓 is 𝑆4, so 𝑆4 is a quotient
of the image of 𝜌𝐸,3. Since 𝑆4 has order 24 and GL2(𝔽3) has order 48, either the
image of 𝜌𝐸,3 is GL2(𝔽3) and we are done or it is isomorphic to 𝑆4. But the image
cannot be isomorphic to 𝑆4, since the image would be normal (since it has index
2), and 𝑆4 is not the unique normal subgroup of GL2(𝔽3) of index 2 (that normal
subgroup is SL2(𝔽3), which is not isomorphic to 𝑆4, since 𝑆4 has a normal subgroup
of index 2 and SL2(𝔽3) does not). This proves that 𝜌𝐸,3 is surjective.
Next we assume that 𝜌𝐸,3 is surjective, and we show that the 3-division polyno-

mial 𝑓 has Galois group 𝑆4. That 𝜌𝐸,3 is surjective implies that ℚ(𝐸[3]) has Galois

group GL2(𝔽3) over ℚ. Let ℚ(𝐸[3])
+ be the subfield fixed by the element −1 of

GL2(𝔽3). Then ℚ(𝐸[3])+ has Galois group PGL2(𝔽3), which is identified with 𝑆4
by its action on the four 3-element subgroups of 𝐸[3]. Each such subgroup is in turn
determined by the 𝑥-coordinate shared by its two nonzero points. So since 𝜌𝐸,3 is
surjective, any permutation of those 𝑥-coordinates is realized by some element of
Gal(ℚ(𝐸[3])+/ℚ). Thus the Galois group of the division polynomials (whose roots
are those 𝑥-coordinates) maps surjectively to 𝑆4, which means it equals 𝑆4. □

Theorem 2.7 (Serre). If 𝑝 ≥ 5 is a prime of good reduction, then 𝜌𝐸,𝑝 is surjective
if and only if 𝜌𝐸,𝑝 is surjective.

Proof. This follows from [Ser72, Thm. 4′, p. 300]. □

Remark 2.8. This result does not extend to 𝑝 = 3 (see [Ser98, Ex. 3, p. IV-28]).
In fact, there are infinitely many elliptic curves with 𝜌𝐸,𝑝 surjective, but 𝜌𝐸,𝑝 not
surjective (see forthcoming work of Noam Elkies).

2.2. Special values of 𝐿-functions. Let 𝐸 be an elliptic curve over ℚ of conduc-
tor 𝑁 , and let 𝑓 =

∑
𝑎𝑛𝑞

𝑛 be the corresponding cusp form.
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The following lemma will be useful in determining how many terms of the 𝐿-
series of 𝐸 are needed to compute the 𝐿-series to a given precision. (We could give
a strong bound, but for our application this will be enough, and it is the simplest
to apply in practice.)

Lemma 2.9. For any positive integer 𝑛, we have ∣𝑎𝑛∣ ≤ 𝑛.

Proof. For 𝑝 prime we know that 𝑎𝑝 = 𝛼 + 𝛽, where 𝛼 and 𝛽 are the roots of
𝑥2 − 𝑎𝑝𝑥+ 𝑝 = 0. Note that ∣𝛼∣ = ∣𝛽∣ = √

𝑝.
Since 𝑎𝑛 is multiplicative, it is enough to show ∣𝑎𝑛∣ ≤ 𝑛 for prime powers 𝑝𝑟. Let

𝑟 > 1. If 𝑝 divides 𝑁 , the conductor of 𝐸, then 𝑎𝑝𝑟 = 𝑎𝑝𝑎𝑝𝑟−1 and by induction

it follows that ∣𝑎𝑝𝑟 ∣ ≤ 𝑝𝑟/2 ≤ 𝑝𝑟. If 𝑝 ∤ 𝑁 , then 𝑎𝑝𝑟 = 𝑎𝑝𝑎𝑝𝑟−1 − 𝑝𝑎𝑝𝑟−2 , and by
induction

𝑎𝑝𝑟 = 𝛼𝑟 + 𝛼𝑟−1𝛽 + ⋅ ⋅ ⋅+ 𝛼𝛽𝑟−1 + 𝛽𝑟.

Then

∣𝑎𝑝𝑟 ∣ ≤ (𝑟 + 1)𝑝𝑟/2.
If 𝑟+1 ≤ 𝑝𝑟/2, then the conclusion follows. This fails only for 𝑝 = 2 and 𝑟 = 1, 2, 3, 4
or 𝑝 = 3 and 𝑟 = 1. But if 𝑟 = 1, then ∣𝑎𝑝𝑟 ∣ ≤ 𝑝1/2 ≤ 𝑝, so we may assume 𝑝 = 2
and 𝑟 = 2, 3, 4. Therefore we finish the proof by observing that

∣𝑎22 ∣ = ∣𝑎22∣ ≤ 2 ≤ 22,
∣𝑎23 ∣ = ∣𝑎32 − 2𝑎2∣ ≤ 25/2 ≤ 23,
∣𝑎24 ∣ = ∣𝑎42 − 4𝑎22∣ ≤ 12 < 24. □

Suppose 𝐸 has even analytic rank. By [Cre97, §2.13] or [Coh93, Prop. 7.5.8], we
have

(2.1) 𝐿(𝐸, 1) = 2

∞∑
𝑛=1

𝑎𝑛
𝑛
𝑒−2𝜋𝑛/

√
𝑁 .

Using the bound ∣𝑎𝑛∣ ≤ 𝑛 of Lemma 2.9, we see that if we truncate the series (2.1)
at the (𝑘 − 1)th term, the error is at most

𝜀 = 2

∞∑
𝑛=𝑘

𝑒−2𝜋𝑛/
√
𝑁 =

2𝑒−2𝜋𝑘/
√
𝑁

1− 𝑒−2𝜋/
√
𝑁
,

and the quantity on the right can easily be evaluated.
Next suppose 𝐸 has odd analytic rank. In [Cre97, §2.13] or [Coh93, Prop. 7.5.9]

we find that

𝐿′(𝐸, 1) = 2
∞∑
𝑛=1

𝑎𝑛
𝑛
𝐺1(2𝜋𝑛/

√
𝑁).

We have

𝐺1(𝑥) =

∫ ∞

1

𝑒−𝑥𝑦
𝑑𝑦

𝑦
=

∫ ∞

𝑥

𝑒−𝑦
𝑑𝑦

𝑦
≤ 𝑒−𝑥,

and we obtain the same error bound as for 𝐿(𝐸, 1). (In fact, 𝐺1(𝑥) ≤ 𝑒−𝑥/𝑥 but
we will not need this stronger bound.)
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2.3. Mordell-Weil groups. If 𝐸 is an elliptic curve over ℚ of analytic rank ≤
1, there are algorithms to compute 𝐸(ℚ) that are guaranteed to succeed. This
is because #Ш(𝐸) is finite, by [Kol91]. Independent implementations of these
algorithms are available as part of mwrank [Creb] and Magma [BCP97]. We did
most of our computations of 𝐸(ℚ) using Sage [Sage] via mwrank, but used Magma
in a few cases, since it is currently the only software in existence that implements
3-descents and 4-descents (thanks to Michael Stoll, Tom Womack, Mark Watkins,
Geoff Bailey and others).

2.4. Other algorithms. We use many other elliptic curve algorithms, for example,
for computing root numbers and the coefficients 𝑎𝑛 of the modular form associated
to 𝐸. For the most part, we used the PARI (see [ABC]) C-library via Sage (see
[Sage]). For descriptions of these general elliptic curve algorithms, see [Coh93,
Cre97].

3. The Kolyvagin bound

In this section we describe a bound due to Kolyvagin on #Ш(𝐸) = #Ш(𝐸/ℚ),
and we compute it for many specific elliptic curves over ℚ. In fact, each bound in
this section is stated as a bound on #Ш(𝐸/𝐾), where 𝐾 is a quadratic imaginary
field; this is not a problem, because the natural map Ш(𝐸/ℚ) → Ш(𝐸/𝐾) has
kernel of order a power of 2, so the bound is also a bound on the odd part of
#Ш(𝐸/ℚ).

Proposition 3.1. If 𝑝 is an odd prime, then ord𝑝(#Ш(𝐸/ℚ)) ≤ ord𝑝(#Ш(𝐸/𝐾)).

Proof. We see using the inf-res sequence of Galois cohomology that the inclusion
H1(ℚ, 𝐸) → H1(𝐾,𝐸) has kernel H1(𝐾/ℚ, 𝐸). Since 𝐾/ℚ is a quadratic exten-
sion, the group H1(𝐾/ℚ, 𝐸) is a 2-torsion group. The kernel 𝐺 of the res map
Ш(𝐸/ℚ) → Ш(𝐸/𝐾) is a subgroup of H1(𝐾/ℚ, 𝐸), so 𝐺 is also a 2-torsion
group. □

Let 𝐸 be an elliptic curve over ℚ of conductor 𝑁 . For any quadratic imaginary
field 𝐾 = ℚ(

√−𝐷), let 𝐸𝐷 denote the twist of 𝐸 by 𝐷. If 𝐸 is defined by
𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏, then 𝐸𝐷 is defined by 𝑦2 = 𝑥3 +𝐷2𝑎𝑥+𝐷3𝑏, and

𝐿(𝐸/𝐾, 𝑠) = 𝐿(𝐸, 𝑠) ⋅ 𝐿(𝐸𝐷, 𝑠).
Definition 3.2 (Heegner hypothesis). We say that 𝐾 satisfies the Heegner hypoth-
esis for 𝐸 if 𝐾 ∕= ℚ(

√−1),ℚ(√−3), the discriminant 𝐷 of 𝐾 is coprime to 𝑁 , and
every prime factor of 𝑁 splits as a product of two distinct primes in the ring of
integers of 𝐾.

Remark 3.3. Slight variants of many of the results below can be proved for 𝐾 =
ℚ(

√−1),ℚ(√−3), but we exclude these two cases for simplicity.
If 𝐾 satisfies the Heegner hypothesis for 𝐸, then there is a Heegner point 𝑦𝐾 ∈

𝐸(𝐾), which is the sum of images of certain complex multiplication (CM) points
on 𝑋0(𝑁) (see [GZ86, §I.3]). Properties of this point affect the arithmetic of 𝐸
over 𝐾.
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3.1. Bounds on #Ш(𝐸/𝐾). Let 𝐸 be a non-CM elliptic curve over ℚ. Sup-
pose that 𝐾 is an imaginary quadratic extension of ℚ that satisfies the Heegner
hypothesis for 𝐸, and that the Heegner point 𝑦𝐾 has infinite order. Under these
hypotheses, Kolyvagin proved the following theorem (see [McC91] for a nice account
of a generalization of this theorem):

Theorem 3.4 (Kolyvagin). Suppose that 𝑝 is an odd prime such that

𝜌𝐸,𝑝 : Gal(ℚ/ℚ)→ Aut(𝐸[𝑝])

is surjective. Then

(3.1) ord𝑝(#Ш(𝐸/𝐾)) ≤ 2 ⋅ ord𝑝([𝐸(𝐾) : ℤ𝑦𝐾 ]).
Cha [Cha03, Cha05] extended Kolyvagin’s method to provide better bounds on

Ш(𝐸/𝐾) in some cases. Let 𝐾 be a number field, let 𝐷𝐾 be the discriminant of 𝐾,
and let 𝑁 be the conductor of 𝐸, and again assume that the Heegner point 𝑦𝐾 has
infinite order.

Theorem 3.5 (Cha). If 𝑝 ∤ 𝐷𝐾 , 𝑝
2 ∤ 𝑁 , and 𝜌𝐸,𝑝 is irreducible, then

ord𝑝(#Ш(𝐸/𝐾)) ≤ 2 ⋅ ord𝑝([𝐸(𝐾) : ℤ𝑦𝐾 ]).
Remark 3.6. As we will see in the proof of Theorem 4.3 below, there is exactly
one curve that satisfies the hypotheses of that theorem, but for which we cannot
use Theorem 3.4 to prove BSD(𝐸, 5) since for that curve 𝜌𝐸,5 is not surjective.
Fortunately, we can use Cha’s Theorem 3.5 in this case.

Cha’s assumption on the reduction of 𝐸 at 𝑝 and the assumption that 𝑝 ∤ 𝐷𝐾
is problematic when there is a prime 𝑝 ≥ 5 of additive reduction or when one uses
only one 𝐾. This situation does occur in several cases, which motivated us to prove
the following theorem:

Theorem 3.7. Suppose 𝐸 is a non-CM elliptic curve over ℚ. Suppose 𝐾 is a
quadratic imaginary field that satisfies the Heegner hypothesis, that the Heegner
point 𝑦𝐾 has infinite order, and suppose 𝑝 is an odd prime such that 𝑝 ∤ [𝐸(𝐾)/𝑡𝑜𝑟 :
ℤ𝑦𝐾 ], that 𝑝 ∤ #𝐸′(𝐾)tor for all curves 𝐸′ that are ℚ-isogenous to 𝐸, and that
disc(𝐾) is divisible by some odd prime other than 𝑝. Then

𝑝 ∤ #Ш(𝐸).

Since the proof of Theorem 3.7 is long, we defer it until Section 5.

Remark 3.8. If in Theorem 3.7, 𝜌𝐸,𝑝 is irreducible, then 𝑝 ∤ #𝐸′(𝐾)tor for all 𝐸′

isogenous to 𝐸. This is because the isogeny 𝐸 → 𝐸′ has degree coprime to 𝑝, so
𝐸[𝑝] ∼= 𝐸′[𝑝]. Also, since 𝐸[𝑝] is irreducible, if 𝐸′(𝐾) were to contain a 𝑝-torsion
point, it would have to contain all of them, a contradiction since 𝝁𝑝 ∕⊂ 𝐾 (recall

that we exclude ℚ(
√−3) as a possibility for 𝐾).

Theorem 3.9 (Bump-Friedberg-Hoffstein, Murty-Murty, Waldspurger). There are
infinitely many quadratic imaginary extensions 𝐾/ℚ such that 𝐾 satisfies the Heeg-
ner hypothesis and ord𝑠=1 𝐿(𝐸/𝐾) = 1.

Proof. If ord𝑠=1𝐿(𝐸, 𝑠) = 0, then the papers [MM91] and [BFH90] both imply the
existence of infinitely many 𝐾 such that 𝑦𝐾 has infinite order. If ord𝑠=1𝐿(𝐸, 𝑠) = 1,
then a result of Waldspurger ([Wal85]) applies, as does [BFH90]. □
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Theorem 3.9 is not used in our computations, but ensures that our procedure for
bounding #Ш(𝐸), when 𝐸 has analytic rank ≤ 1, is an algorithm; i.e., it always
terminates with a nontrivial upper bound.

3.2. The Gross-Zagier formula. We use the Gross-Zagier formula to compute
the index [𝐸(𝐾) : ℤ𝑦𝐾 ] without explicitly computing 𝑦𝐾 .
The modularity theorem of [BCDT01] asserts that there exists a surjective mor-

phism 𝜋 : 𝑋0(𝑁) → 𝐸. Choose 𝜋 to have minimal degree among all such mor-
phisms. Let 𝜋∗(𝜔) be the pullback of a minimal invariant differential 𝜔 on 𝐸. Then
𝜋∗(𝜔) = 𝛼 ⋅ 𝑓 , for some constant 𝛼 and some normalized cusp form 𝑓 . By [Edi91,
Prop. 2], we know that 𝛼 ∈ ℤ.

Definition 3.10 (Manin constant). The Manin constant of 𝐸 is 𝑐 = ∣𝛼∣.
Manin conjectured in [Man72, §5] that 𝑐 = 1 for the optimal curve in the ℚ-

isogeny class of 𝐸. Cremona has shown that 𝑐 = 1 for every curve over ℚ of
conductor up to 60000 (see Section 3.5.1 below).

Theorem 3.11 (Gross-Zagier, Zhang). If 𝐾 satisfies the Heegner hypothesis for 𝐸,
then the Néron-Tate canonical height over 𝐾 of 𝑦𝐾 is

(3.2) ℎ(𝑦𝐾) =

√
𝐷

𝑐2 ⋅ ∫
𝐸(ℂ)

𝜔 ∧ 𝑖𝜔
⋅ 𝐿′(𝐸/𝐾, 1).

Proof. Gross and Zagier proved the above formula in [GZ86] under the hypothesis
that 𝐷 is odd (see the bottom of p. 227 of [GZ86] for the restriction that 𝐷 be
odd). For the general assertion, see [Zha04, Thm. 6.1]. □

3.3. Remarks on the index. Suppose that 𝐸 is an elliptic curve over ℚ of con-
ductor 𝑁 and that 𝐸 has analytic rank 1 over a quadratic imaginary field 𝐾 that
satisfies the Heegner hypothesis. In [GZ86, Conj. 2.2, p. 311], Gross and Zagier
rephrase the analogue of Conjecture 1.1 for 𝐸 over𝐾 using the Gross-Zagier formula
as follows:

Conjecture 3.12 (Birch and Swinnerton-Dyer). Suppose 𝐾 is a quadratic imagi-
nary field (not ℚ(𝑖) or ℚ(

√−3)) that satisfies the Heegner hypothesis, and that 𝐸
has analytic rank 1 over 𝐾. Then

(3.3) #Ш(𝐸/𝐾) =

(
[𝐸(𝐾) : ℤ𝑦𝐾 ]

𝑐 ⋅∏𝑝∣𝑁 𝑐𝑝
)2

.

Here the 𝑐𝑝 are the Tamagawa numbers of 𝐸 over ℚ, 𝑐 is the Manin constant of 𝐸,
and ℤ𝑦𝐾 is the cyclic group generated by 𝑦𝐾 .

Remark 3.13. A serious issue is that Conjecture 3.12 implies that the index 𝐼𝐾 =
[𝐸(𝐾) : ℤ𝑦𝐾 ] will be divisible by the Tamagawa numbers 𝑐𝑝. One sees using
Tate curves that these Tamagawa numbers can be very large; hence the bound in
Theorems 3.4, 3.5 and 3.7 can be very weak. In many cases when 𝐸 has analytic
rank 0, we could instead apply Theorem 4.1 below, but when 𝐸 has analytic rank 1
a different approach is required such as computation of 𝑝-adic regulators and use of
results of K. Kato, B. Perrin-Riou, P. Schneider and others toward 𝑝-adic analogues
of the BSD conjecture. This is the subject of a forthcoming paper by W. Stein and
C. Wuthrich. In general, it is natural to ask for a refinement of Kolyvagin’s bound
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(3.1) that takes into account the Tamagawa numbers. The forthcoming Berkeley
Ph.D. thesis of Dimitar Jetchev makes a substantial improvement in this direction.

Remark 3.14. Conjecture 3.12 has interesting implications in certain special cases.
For example, if 𝐸 is the curve 91b, then 𝑐7 = 𝑐13 = 1. Also 𝑐 = 1, as Cremona
has verified, and #𝐸(ℚ)tor = 3. Thus for any 𝐾, we have 3 ∣ [𝐸(𝐾) : ℤ𝑦𝐾 ].
If 𝑦𝐾 has infinite order, then Conjecture 3.12 implies that 32 ∣ #Ш(𝐸/𝐾). For
𝐾 = ℚ(

√−103), the point 𝑦𝐾 is torsion, and in this case 𝐸(𝐾) has rank 3 and
(conjecturally)Ш(𝐸/𝐾)[3] = 0. See Remark 3.27 for another example along these
lines.

3.4. Mordell-Weil groups and quadratic imaginary fields. Let 𝐸 be an el-
liptic curve over ℚ and 𝐾 = ℚ(

√
𝐷) a quadratic imaginary field such that 𝐸(𝐾)

has rank 1. In this section we explain how to understand 𝐸(𝐾) in terms of 𝐸(ℚ)
and 𝐸𝐷(ℚ).
The following proposition is well known, but we were unable to find a reference.

Proposition 3.15. Let 𝑅 = ℤ[1/2] and 𝐾 = ℚ(
√
𝐷). For any square-free inte-

ger 𝐷 ∕= 1, we have
𝐸(𝐾)⊗𝑅 = (𝐸(ℚ)⊗𝑅)⊕ (𝐸𝐷(ℚ)⊗ 𝑅).

Proof. Let 𝜏 be the complex conjugation automorphism on 𝐸(𝐾)⊗ 𝑅. The char-
acteristic polynomial of 𝜏 is 𝑥2 − 1, which is square-free, so 𝐸(𝐾) ⊗ 𝑅 is a direct
sum of its +1 and −1 eigenspaces for 𝜏 . The natural map 𝐸(ℚ) ↪→ 𝐸(𝐾) iden-
tifies 𝐸(ℚ) ⊗ 𝑅 with the +1 eigenspace for 𝜏 since 𝐸(𝐾)𝐺ℚ = 𝐸(ℚ); likewise,
𝐸𝐷(ℚ) ↪→ 𝐸(𝐾) identifies 𝐸𝐷(ℚ)⊗𝑅 with the −1 eigenspace for 𝜏 . □

The following slightly more refined proposition will be important for certain
explicit Heegner point computations (directly after Equation (3.4)).

Proposition 3.16. Suppose 𝐸(𝐾) has rank 1. Then the image of either 𝐸(ℚ)/ tor
or 𝐸𝐷(ℚ)/ tor has index at most 2 in 𝐸(𝐾)/ tor.

Proof. Since 𝐸(𝐾) has rank 1, Proposition 3.15 implies that exactly one of 𝐸(ℚ)
and 𝐸𝐷(ℚ) has rank 1 and the other has rank 0. We may assume that 𝐸(ℚ) has
rank 1 (otherwise, swap 𝐸 and 𝐸𝐷). Let 𝑖 be the natural inclusion 𝐸(ℚ) ↪→ 𝐸(𝐾),
and let 𝜏 denote the automorphism of 𝐸(𝐾) induced by complex conjugation. Then
𝑃 �→ (1+ 𝜏 )𝑃 induces a map 𝐸(𝐾)→ 𝐸(𝐾)+ = 𝐸(ℚ) that, upon taking quotients
by torsion, induces a map 𝜓 : 𝐸(𝐾)/ tor → 𝐸(ℚ)/ tor. Let 𝑃1 be a generator for
𝐸(ℚ)/ tor and 𝑃2 a generator for 𝐸(𝐾)/ tor, and write 𝑖(𝑃1) = 𝑛𝑃2, for some nonzero
integer 𝑛. Then

[2]𝑃1 = 𝜓(𝑖(𝑃1)) = 𝜓(𝑛𝑃2) = [𝑛]𝜓(𝑃2) = [𝑛𝑚]𝑃1 (mod 𝐸(ℚ)tor),

for some nonzero integer 𝑚. Thus 2 = 𝑛𝑚, so 𝑛 ≤ 2. □

The root number 𝜀𝐸 = ±1 of 𝐸 is the sign of the functional equation of 𝐿(𝐸, 𝑠).
If 𝜀𝐸 = +1, then the analytic rank ord𝑠=1 𝐿(𝐸, 𝑠) is even, and if 𝜀𝐸 = −1, then it
is odd.

Proposition 3.17. Let 𝐸 be an elliptic curve, let 𝐷 = 𝐷𝐾 be a discriminant that
satisfies the Heegner hypothesis such that ord𝑠=1 𝐿(𝐸/𝐾, 𝑠) = 1, and let 𝑅 = ℤ[1/2].
Then
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(1) If 𝜀𝐸 = +1, then a generator of 𝐸(𝐾) ⊗ 𝑅 is the image of a generator of
𝐸𝐷(ℚ)⊗𝑅 and 𝐿′(𝐸/𝐾, 1) = 𝐿(𝐸, 1) ⋅ 𝐿′(𝐸𝐷, 1).

(2) If 𝜀𝐸 = −1, then a generator of 𝐸(𝐾) ⊗ 𝑅 is the image of a generator of
𝐸(ℚ)⊗𝑅 and 𝐿′(𝐸/𝐾, 1) = 𝐿′(𝐸, 1) ⋅ 𝐿(𝐸𝐷, 1).

Proof. Since 𝐷 satisfies the Heegner hypothesis, by computing the residue symbol(
𝑁
𝐷

)
and taking into account how the sign of the functional equation changes under

twist, we see that

ord𝑠=1 𝐿(𝐸, 𝑠) ∕≡ ord𝑠=1 𝐿(𝐸(𝐷), 𝑠) (mod 2).

The factorization

𝐿(𝐸/𝐾, 𝑠) = 𝐿(𝐸/ℚ, 𝑠) ⋅ 𝐿(𝐸𝐷/ℚ, 𝑠)
then implies the formulas for 𝐿′(𝐸/𝐾, 1).
Since 𝐾 satisfies the Heegner hypothesis and ord𝑠=1 𝐿(𝐸/𝐾, 𝑠) = 1, work of

Kolyvagin and Gross-Zagier (see [Kol91, Kol88, GZ86]) implies that 𝐸(𝐾) has
rank 1. This implies the statement about generators. □

We will use the above proposition to relate computation of 𝐸(𝐾) ⊗ 𝑅 to com-
putation of Mordell-Weil groups of elliptic curves defined over ℚ.

3.5. Computing the index of the Heegner point. We assume throughout this
section that 𝐸 is an elliptic curve over ℚ and that 𝐾 is a quadratic imaginary field
that satisfies the Heegner hypothesis for 𝐸 such that the corresponding Heegner
point 𝑦𝐾 has infinite order.
A key input to the theo rems of Section 3.1 is computation of the index [𝐸(𝐾) :

ℤ𝑦𝐾 ]. We have

(3.4) [𝐸(𝐾)/tor : ℤ𝑦𝐾 ]
2 = ℎ(𝑦𝐾)/ℎ(𝑧),

where 𝑧 is a generator of 𝐸(𝐾)/ tor.
In the Gross-Zagier formula we have ℎ = ℎ𝐾 , the Néron-Tate canonical height

on 𝐸(𝐾) = 𝐸𝐷(𝐾) relative to 𝐾. Let ℎℚ denote the height on 𝐸(ℚ) or 𝐸
𝐷(ℚ).

Note that if 𝑃 ∈ 𝐸(ℚ) or 𝐸𝐷(ℚ), then

(3.5) ℎℚ(𝑃 ) =
1

[𝐾 : ℚ]
⋅ ℎ𝐾(𝑃 ) = ℎ𝐾(𝑃 )

2
.

Using Proposition 3.16 and the algorithms for computing Mordell-Weil groups
(see Section 2.3), we can compute 𝑧 or 2𝑧 (where 𝑧 is a generator of 𝐸(𝐾)/tor), so
we can compute ℎ(𝑧). In practice, even for curves of conductor up to 1000, it can
take a huge amount of time to compute 𝑧. This section is about practical methods
to either compute the index or at least bound it.
It is not difficult to compute ℎ(𝑦𝐾), without computing 𝑦𝐾 itself, using the Gross-

Zagier formula (Section 3.2). We compute 𝐿′(𝐸/𝐾, 1) by computing 𝐿-functions
of elliptic curves defined over ℚ as explained in Proposition 3.17. It remains to
compute

(3.6) 𝛼 =

√∣𝐷∣
𝑐2
∫
𝐸(ℂ)

𝜔 ∧ 𝑖𝜔
,

where 𝑐 is the Manin constant of 𝐸.
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3.5.1. The Manin constant. Manin conjectured that the Manin constant 𝑐 for any
optimal elliptic curve factor 𝐸 of 𝑋0(𝑁) is 1, and there are bounds on the pos-
sibilities for 𝑐 (see, e.g., [Edi91, ARS05]). There is an algorithm to verify in any
particular case that 𝑐 = 1, as explained in the proof of the following proposition in
Cremona’s appendix to [ARS05].

Proposition 3.18 (Cremona). If 𝐸 is an optimal elliptic curve of conductor at
most 60000, then the Manin constant of 𝐸 is 1.

3.5.2. The integral. We have the following well-known lemma regarding the integral
in (3.6), for which we were unable to find a suitable reference:

Lemma 3.19. We have
∫
𝐸(ℂ)

𝜔∧ 𝑖𝜔 = 2 ⋅Vol(ℂ/Λ), where the volume Vol(ℂ/Λ) is
the absolute value of the determinant of a matrix formed from a basis for the lattice
in ℂ obtained by integrating the Néron differential 𝜔𝐸 against all homology classes
in H1(𝐸,ℤ).

Proof. Fix the Weierstrass equation 𝑦2 = 4𝑥3 + 𝑔4𝑥 + 𝑔6 for 𝐸, so 𝑥 = ℘(𝑧) and
𝑦 = ℘′(𝑧). First note that

𝜔 =
𝑑𝑥

𝑦
=
𝑑℘(𝑧)

℘′(𝑧)
=
℘′(𝑧)𝑑𝑧
℘′(𝑧)

= 𝑑𝑧.

Thus ∫
𝐸(ℂ)

𝜔 ∧ 𝑖𝜔 = 𝑖

∫
ℂ/Λ

𝑑𝑧 ∧ 𝑑𝑧

= 𝑖

∫
ℂ/Λ

(𝑑𝑥+ 𝑖𝑑𝑦) ∧ (𝑑𝑥− 𝑖𝑑𝑦)

= 𝑖(−2𝑖)
∫
ℂ/Λ

𝑑𝑥 ∧ 𝑑𝑦 = 2 ⋅Vol(ℂ/Λ). □

Note that Vol(ℂ/Λ) can be computed to high precision using the Gauss arith-
metic-geometric mean, as described in [Cre97, §3.7].

3.5.3. Mordell-Weil groups and heights. For the curves on which we run our com-
putation, we use [Creb] (via [Sage]), which computes a basis for 𝐸𝐷(ℚ).
Cremona describes the computation of heights of points on curves defined over ℚ

in detail in [Cre97, §3.4]. There is an explicit bound on the error in the height
computation, which shrinks exponentially in terms of the precision of approximating
series, and can be made arbitrarily small. For the 𝐿-function computations, see
Section 2.2.

3.5.4. Indices of Heegner points on rank 1 curves. Suppose 𝐸 is an elliptic curve
over ℚ of analytic rank 1, and suppose we wish to compute indexes

𝑖𝐾 = [𝐸(𝐾)/ tor : ℤ𝑦𝐾 ]

for various 𝐾. Assume that 𝐸(ℚ) is known, so we can compute ℎ(𝑧) to high preci-
sion, where 𝑧 generates 𝐸(ℚ)/tor. Then computing the indexes 𝑖𝐾 is relatively easy.
For each 𝐾, compute ℎ(𝑦𝐾) as described above using the Gross-Zagier formula, so

ℎ(𝑦𝐾) = 𝛼 ⋅ 𝐿′(𝐸, 1) ⋅ 𝐿(𝐸𝐷, 1).
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Then if 𝑧 also generates 𝐸(𝐾)/ tor we have

(3.7) 𝑖𝐾 =

√
ℎ𝐾(𝑦𝐾)

ℎ𝐾(𝑧)
=

√
ℎ𝐾(𝑦𝐾)

2ℎℚ(𝑧)
.

The other possibility is that 𝑧 generates a subgroup of 𝐸(𝐾)/ tor of index 2, in which
case there is a 𝑤 that generates 𝐸(𝐾)/𝑡𝑜𝑟 such that 2𝑤 = 𝑧, so ℎ(𝑧) = 4ℎ(𝑤); hence

(3.8) 𝑖𝐾 =

√
ℎ𝐾(𝑦𝐾)

ℎ𝐾(𝑤)
=

√
ℎ𝐾(𝑦𝐾)
1
4ℎ𝐾(𝑧)

= 2 ⋅
√
ℎ𝐾(𝑦𝐾)

2ℎℚ(𝑧)
.

We emphasize that computation of the Heegner point itself is not necessary. For
the results of this index computation for 𝐸 of conductor ≤ 1000, see Section 3.6.2.
Algorithm 3.20. Given an elliptic curve 𝐸 of analytic rank 1 and a Heegner
quadratic imaginary field 𝐾 of discriminant 𝐷, this algorithm computes the odd
part of the index 𝑖𝐾 of the Heegner point in 𝐸(𝐾)/tor.

(1) Since 𝐸 has analytic rank 1, the BSD rank conjecture is known for 𝐸, so
we can compute 𝐸(𝐾). We can hence compute the regulator Reg𝐸 of 𝐸,
correct to precision at least 10−10 (i.e., we find a very small interval that
contains Reg𝐸).

(2) Compute 𝐿′(𝐸, 1) to some bounded precision 𝜀, using 2
√
𝑁+10 terms. The

bound 𝜀 is determined as explained in Section 2.2.
(3) Compute 𝐿(𝐸𝐷, 1) to some bounded precision 𝜀′ using 2

√
𝑁 + 10 terms.

(4) Compute 𝛼 =
√∣𝐷∣/(2Vol(ℂ/Λ)) to precision at least 10−10 using PARI.

(5) Using interval arithmetic (in [Sage]) and the bound above we compute an
interval in which the real number

𝛼 ⋅ 𝐿′(𝐸, 1) ⋅ 𝐿′(𝐸𝐷, 1)/(Reg𝐸 /2)

must lie. We thus obtain a (small) interval that contains 𝑖2𝐾 or 𝑖2𝐾/4 using
(3.7)–(3.8). Multiply by 4 if there is a unique integer divided by 4 in this
interval.

(6) If there is a unique integer in the resulting interval, then by Theorem 3.11
this integer must be the square index [𝐸(𝐾) : ℤ𝑦𝐾 ]

2; that we find a square
provides a good double check on our calculation. If there are at least two
integers in this interval, we increase the precision of the computation of 𝛼,
Reg𝐸, 𝐿

′(𝐸, 1), and 𝐿(𝐸, 1) and repeat the above steps.

Example 3.21. Let 𝐸 be the elliptic curve 540b given by the Weierstrass equation
𝑦2 = 𝑥3 + 3𝑥 + 1, which has rank 1 and conductor 540 = 22 ⋅ 33 ⋅ 5. The first 𝐾
that satisfies the Heegner hypothesis is ℚ(

√−71). The group 𝐸(ℚ) is generated
by 𝑧 = (0, 1), and we have ℎℚ(𝑧) ∼ 0.656622630. We have ∣𝐷∣ = 71, 𝑐 = 1, and
Vol(ℂ/Λ) ∼ 3.832955, so

𝛼 ∼
√
71

2 ⋅ 3.832955 ∼ 1.09917.
Also, 𝐿′(𝐸, 1) ∼ 1.9340458 and 𝐿(𝐸𝐷, 1) = 5.559761726; hence

ℎ(𝑦𝐾) ∼ 1.09917 ⋅ 1.9340458 ⋅ 5.559761726 ∼ 11.819.
Thus

𝑖𝐾 =

√
11.819

2 ⋅ 0.656622630 ∼
√
8.99999 ∼ 3.
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Note that here we have computed the integer 𝑖𝐾 approximately to several decimal
places of precision, so are justified in rounding to 3.

3.5.5. Indices of Heegner points on rank 0 curves. Assume that the analytic rank
of 𝐸 is 0. In practice, computing the indexes of Heegner points in this case is sub-
stantially more difficult than in the rank 1 case. For a Heegner quadratic imaginary
field 𝐾 = ℚ(

√
𝐷), we have for 𝑧 a generator of 𝐸(𝐾)/ tor that

𝑖2𝐾 = [𝐸(𝐾)/ tor : ℤ𝑦𝐾 ]
2 =

ℎ(𝑦𝐾)

ℎ(𝑧)
= 𝛼 ⋅ 𝐿(𝐸, 1) ⋅ 𝐿

′(𝐸𝐷, 1)
ℎ(𝑧)

.

Thus one method for finding 𝑖𝐾 is to find a generator 𝑧′ ∈ 𝐸𝐷(ℚ) exactly using
descent algorithms, which will terminate since we know that Ш(𝐸𝐷) is finite, by
Kolyvagin’s theorem. However, since 𝐸𝐷 has potentially large conductor and
rank 1, in practice the Mordell-Weil group will sometimes be generated by a point
of large height, hence be extremely time consuming to find. One can use 2-descent,
3-descent, 4-descent, and Heegner points methods (i.e., explicitly compute the coor-
dinates of the Heegner point as decimals and try to recognize them using continued
fractions). In some cases these methods produce in a reasonable amount of time
an element of 𝐸𝐷(ℚ) of infinite order, and one can then saturate the point using
[Creb] to find a generator 𝑧 ∈ 𝐸𝐷(ℚ). However, we will explain a trick below to
get information about the index without actually computing it.

Example 3.22. Let 𝐸 be the curve 11a, with Weierstrass equation 𝑦2 + 𝑦 =
𝑥3 − 𝑥2 − 10𝑥 − 20. The first field that satisfies the Heegner hypothesis is 𝐾 =
ℚ(

√−7). The conductor of the quadratic twist 𝐹 = 𝐸−7 is 539, and we find a
generator 𝑧 ∈ 𝐹 (ℚ) for the Mordell-Weil group of this twist. This point has height
ℎℚ(𝑧) ∼ 0.1111361471. We have ∣𝐷∣ = 7 and Vol(ℂ/Λ) ∼ 1.8515436234, so

𝛼 ∼
√
7

2 ⋅ 1.8515436234 ∼ 0.71447177.

Also, 𝐿(𝐸, 1) ∼ 0.25384186 and 𝐿′(𝐸𝐷, 1) ∼ 1.225566874, so the height over 𝐾 of
the Heegner point is thus

ℎ(𝑦𝐾) ∼ 0.71447177 ⋅ 0.25384186 ⋅ 1.225566874 ∼ 0.2222722925.
Thus by (3.5),

𝑖2𝐾 =
ℎ(𝑧)

ℎ(𝑦𝐾)
=
2ℎℚ(𝑧)

ℎ(𝑦𝐾)
∼ 1.

As mentioned above, there is a trick to bounding the index 𝑖𝐾 without computing
any elements of 𝐸(𝐾). This is useful when the algorithms mentioned above for
computing a generator of 𝐸𝐷(ℚ) produce no information in a reasonable amount
of time. First compute the height ℎ(𝑦𝐾) using the Gross-Zagier formula. Next
compute the Cremona-Prickett-Siksek [CPS06] bound 𝐵 for 𝐸𝐷, which is a number
such that if 𝑃 ∈ 𝐸𝐷(ℚ), then the naive logarithmic height of 𝑃 differs from the
canonical height of 𝑃 by at most 𝐵. Using standard sieving methods implemented
in [Creb], we compute all points on 𝐸 of naive logarithmic height up to some number
ℎ0. If we find any point of infinite order, we saturate, and hence compute 𝐸

𝐷(ℚ),
then use the above methods. If we find no point of infinite order, we conclude that
there is no point in 𝐸𝐷(ℚ) of canonical height ≤ ℎ0−𝐵. If ℎ0−𝐵 > 0, we obtain an
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upper bound on 𝑖𝐾 as follows. If 𝑧 is a generator for 𝐸
𝐷(ℚ), then ℎℚ(𝑧) > ℎ0−𝐵,

so using (3.5) we have

ℎℚ(𝑧) =
1

2
⋅ ℎ𝐾(𝑧) = ℎ(𝑦𝐾)

2 ⋅ 𝑖2𝐾
> ℎ0 −𝐵.

Solving for 𝑖𝐾 gives

(3.9) 𝑖𝐾 <

√
ℎ(𝑦𝐾)

2(ℎ0 −𝐵)
,

so to bound 𝑖𝐾 we consider many 𝐾 (e.g., the first 30 ordered by the absolute value
of the discriminant), and for each compute the quantity on the right side of (3.9)
for a fixed choice of ℎ0. We then use a 𝐾 that minimizes this quantity.

Remark 3.23. Another approach to finding some Heegner point is to search for
small points on 𝐸(𝐾) over various fields 𝐾, until finding a 𝐾 that satisfies the
Heegner hypothesis and is such that 𝐸(𝐾) has rank 1. For example, if 𝐸 is given
by 𝑦2 = 𝑥3+𝑎𝑥+ 𝑏, and 𝑥0 is a small integer, write 𝑦

2
0 ⋅𝐷 = 𝑥30+𝑎𝑥0+ 𝑏, where 𝑦0

and 𝐷 are integers, and 𝐷 is square-free. Then (𝑥0, 𝑦0) is a point on the quadratic
twist of 𝐸 by 𝐷. We did not use this approach, since it was not necessary in order
to prove Theorem 1.9. It would be needed to continue these computations to a
much larger conductor.

Example 3.24. Let 𝐸 be the elliptic curve 546e. Then 𝐾 = ℚ(
√−311) satisfies

the Heegner hypothesis, since the prime divisors of 546 = 2 ⋅3 ⋅7 ⋅13 split completely
in 𝐾. We compute the height of the Heegner point 𝑦𝐾 . Let 𝐹 be the quadratic
twist of 𝐸 by −311. We have

𝛼 ∼
√
311

2 ⋅ 0.0340964942689662168001 ∼ 258.60711587.

Thus

ℎ(𝑦𝐾) ∼ 𝛼 ⋅ 𝐿(𝐸, 1) ⋅ 𝐿′(𝐹, 1)
∼ 258.60711587 ⋅ 2.2783578 ⋅ 12.41550 ∼ 7315.20688,

where in each case we compute the 𝐿-series using enough terms to obtain a value cor-
rect to ±10−5. Thus 7320 is a conservative upper bound on ℎ(𝑦𝐾). The Cremona-
Prickett-Siksek bound for 𝐹 is 𝐵 = 13.0825747. We search for points on 𝐹 of naive
logarithmic height ≤ 18, and we find no points. Thus (3.9) implies that

𝑖𝐾 <
√
7320/(2 ⋅ (18− 13.0825747)) ∼ 27.28171 < 28.

It follows that if 𝑝 ∣ 𝑖𝐾 , then 𝑝 ≤ 23. Searching up to height 21 would (presumably)
allow us to remove 23, but this might take much longer.

For the results of our computations for all 𝐸 of conductor ≤ 1000, see Sec-
tion 3.6.3.
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3.6. Results of computations.

3.6.1. Two descent. In this section, we explain how descent computations imply
that BSD(𝐸, 2) is true for curves of conductor 𝑁 ≤ 1000.
Theorem 3.25. If 𝐸 is an elliptic curve with 𝑁 ≤ 1000, then BSD(𝐸, 2) is true.
Proof. According to Theorem 1.4, it suffices to prove the theorem for the set 𝑆 of
optimal elliptic curves with 𝑁 ≤ 1000. By doing an explicit 2-descent, Cremona

computed Sel(2)(𝐸/ℚ) for every curve 𝐸 ∈ 𝑆, as explained in [Cre97]. His calcula-
tions show thatШ(𝐸)[2] has order the predicted order ofШ(𝐸)[2∞] for all 𝐸 ∈ 𝑆.

Using Magma’s FourDescent command, we compute Sel(4)(𝐸/ℚ) in the three cases
in which Ш(𝐸)[2] ∕= 0, and we find that Ш(𝐸)[4] =Ш(𝐸)[2]. By Theorem 1.8, it
follows that BSD(𝐸, 2) is true for all 𝐸 ∈ 𝑆. □

3.6.2. Curves of rank 1. First we consider curves of rank 1. Recall from Conjec-
ture 1.6 that we expect Ш to be trivial for all optimal rank 1 curves of conductor
at most 1000.

Proposition 3.26. Suppose (𝐸, 𝑝) is a pair with 𝐸 an optimal elliptic curve of
conductor up to 1000 of rank 1. Let 𝐼 be the greatest common divisor of [𝐸(𝐾)/ tor :

ℤ𝑦𝐾 ] for the first four quadratic imaginary fields 𝐾 = ℚ(
√
𝐷) (ordered by absolute

value of the discriminant) that satisfy the Heegner hypothesis. If 𝑝 ∣ 𝐼, then
𝑝 ∣ 2 ⋅#𝐸(ℚ)tor ⋅

∏
𝑞∣𝑁

𝑐𝐸,𝑞,

except if (𝐸, 𝑝) is (540𝑏, 3) or (756𝑏, 3).

Proof. For each rank 1 curve 𝐸 of conductor up to 1000 we apply Algorithm 3.20
with the first four Heegner discriminants 𝐷 = 𝐷0, 𝐷1, 𝐷2, 𝐷3 (smallest in absolute
value) to compute the index 𝑖𝐾 and observe that the conclusion of the proposition
holds. □

Remark 3.27. For the curves 540b and 756b there is no 3-torsion, but there is a
rational 3-isogeny. In each case we verified in addition that 3 divides the GCD
of the indexes [𝐸(𝐾)/tor : ℤ𝑦𝐾 ] for at least the first 16 fields 𝐾 (ordered by the
absolute value of the discriminant) that satisfy the Heegner hypothesis. Thus as in
Remark 3.14, Conjecture 3.12 asserts that 9 ∣ #Ш(𝐸/𝐾) for the first sixteen 𝐾.
This illustrates that not only Tamagawa numbers but also isogenies can make it
impossible to apply Kolyvagin’s theorem to give a tight upper bound on #Ш(𝐸/ℚ),
even if Kolyvagin’s theorem did not require that 𝜌𝐸,𝑝 is surjective.

Proposition 3.28. Suppose 𝐸 is a non-CM optimal curve of conductor ≤ 1000
and that 𝑝 is an odd prime such that 𝜌𝐸,𝑝 is irreducible but not surjective. If 𝐸 has
rank 0, then (𝐸, 𝑝) is one of the following: (245b,3), (338d,3), (352e,3), (608b,5),
(675d,5), (675f,5), (704h,3), (722d,3), (726f,3), (800e,5), (800f,5), (864d,3), (864f,3),
(864g,3), (864i,3). If 𝐸 has rank 1, then (𝐸, 𝑝) is one of the following: (245a,3),
(338e,3), (352f,3), (608e,5), (675b,5), (675i,5), (704l,3), (722b,3), (726a,3), (800b,5),
(800i,5), (864a,3), (864b,3), (864j,3), (864l,3). There are no curves of rank ≥ 2 with
the above property.
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Proof. Using Proposition 2.5 we make a list of pairs (𝐸, 𝑝) such that 𝜌𝐸,𝑝 might
not be surjective, and such that if (𝐸, 𝑝) is not in this list, then 𝜌𝐸,𝑝 is surjective.
Then using the program allisog, we compute for each curve 𝐸, a list of all degrees
of isogenies emanating from 𝐸, and remove those pairs (𝐸, 𝑝) for which 𝑝 divides
the degree of one of those isogenies. The curves listed above are the ones that
remain. □

Remark 3.29. In Proposition 3.28, the nonsurjective irreducible (𝐸, 𝑝) come in pairs,
one of rank 0 and one of rank 1 having the same conductor. Each pair of curves is
related by a quadratic twist. This pattern is common, but does not always occur.
For example, (1184f,3) and (1184h,3) are both of rank 0 and have nonsurjective
irreducible representations, and no curve of conductor 1184 and rank 1 has this
property. Note that 1184 = 25 ⋅37 and 1184f and 1184h are quadratic twists of each
other by −1.
Remark 3.30. Proposition 3.28 suggests that it is rare for 𝜌𝐸,𝑝 to be nonsurjective

yet irreducible. When this does occur, frequently 𝑝2 ∣ 𝑁 , though not always.
Continuing the computation to conductor 10000 we find that 𝑝2 ∣ 𝑁 about half the
time in which 𝜌𝐸,𝑝 is nonsurjective yet irreducible. This gives a sense of the extent
to which Theorem 3.5 improves upon Theorem 3.4.

Theorem 3.31. Suppose (𝐸, 𝑝) is a pair consisting of a rank 1 non-CM elliptic
curve 𝐸 of conductor ≤ 1000 and a prime 𝑝 such that 𝜌𝐸,𝑝 is irreducible and 𝑝 does
not divide any Tamagawa number of 𝐸. Then BSD(𝐸, 𝑝) is true.

Proof. By Theorem 3.25 we may assume that 𝑝 is odd. The pairs that do not
satisfy the Heegner point divisibility hypothesis in Proposition 3.26 are those in
𝑆 = {(540𝑏, 3), (756𝑏, 3)}. However, both of these curves admit a rational 3-isogeny,
so are excluded by the hypothesis of Theorem 3.31.
Let

𝑇 = {(245𝑎, 3), (338𝑒, 3), (352𝑓, 3), (608𝑒, 5), (675𝑏, 5), (675𝑖, 5),
(704𝑙, 3), (722𝑏, 3), (726𝑎, 3), (800𝑏, 5), (800𝑖, 5), (864𝑎, 3),

(864𝑏, 3), (864𝑗, 3), (864𝑙, 3)}.
Then Proposition 3.28, Theorem 1.8, and Theorem 3.4 together imply BSD(𝐸, 𝑝) for
all pairs as in the hypothesis of Theorem 3.31, except the pairs in 𝑇 . Note that for
each (𝐸, 𝑝) ∈ 𝑇 , we have 𝑝2 ∣ 𝑁 , so Theorem 3.5 does not apply either. We eliminate
the pairs (245𝑎, 3), (338𝑒, 3), (352𝑓, 3), (608𝑒, 5), (704𝑙, 3), (864𝑗, 3), (864𝑙, 3) from
consideration because in each case 𝑝 ∣∏ 𝑐ℓ.
For each (𝐸, 𝑝) ∈ 𝑇 (except those eliminated above) a computation shows that

the representation 𝜌𝐸,𝑝 is irreducible and 𝐸 does not have CM. Note that for the
pairs {(245𝑎, 3), (338𝑒, 3), (352𝑓, 3), (608𝑒, 5), (704𝑙, 3), (864𝑗, 3), (864𝑙, 3)} we have
𝑝 ∣ [𝐸(𝐾) : ℤ𝑦𝐾 ] for the first six Heegner 𝐾, but that is not a problem since we
eliminated these pairs from consideration. For the remaining 8 pairs, in each case
we find a 𝐾 that satisfies the hypotheses of Theorem 3.7, so 𝑝 ∤ #Ш(𝐸/𝐾). See
Table 1.
By Proposition 3.1, since 𝑝 is odd, this implies that BSD(𝐸, 𝑝) is true. □
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Table 1

𝐸 𝑝 first 𝐾 satisfying Theorem 3.7 for (𝐸, 𝑝)

675b 5 ℚ(
√−11)

675i 5 ℚ(
√−11)

722b 3 ℚ(
√−15)

726a 3 ℚ(
√−95)

800b 5 ℚ(
√−39)

800i 5 ℚ(
√−31)

864a 3 ℚ(
√−23)

864b 3 ℚ(
√−23)

3.6.3. Curves of rank 0.

Proposition 3.32. Suppose (𝐸, 𝑝) is a pair with 𝐸 an optimal elliptic curve of con-
ductor ≤ 1000 of rank 0. Let 𝐼 be the greatest common divisor of [𝐸(𝐾)/ tor : ℤ𝑦𝐾 ]
as 𝐾 varies over quadratic imaginary fields that satisfy the Heegner hypothesis.
If 𝑝 ∣ 𝐼 and 𝜌𝐸,𝑝 is irreducible, then

𝑝 ∣ 2 ⋅#𝐸(ℚ)tor ⋅
∏
𝑞∣𝑁

𝑐𝐸,𝑞,

except possibly for the curves in Table 2.

Table 2

𝐸 𝑝 ∣ 𝐼? 𝐷 used
258e 3 −983
378g 3 −47
594f 3 −359
600g 3 −71
612d 3 −359
626b 3 −39
658a 3 −31
676e 5 −23
681b 3 −8
735b 3 −479
738b 3 −23
742f 3, 5 −199

𝐸 𝑝 ∣ 𝐼? 𝐷 used
777b 3 −215
780b 3,7 −191
819d 3,5 −404
850i 3 −151
858d 5, 7 −95
858k 7 −1031
900a 3 −71
906e 𝑝 ≤ 19 −23
924a 5 −1679
978c 3 −431
980i 3 −671

In Table 2, the first column gives an elliptic curve, the second column gives the
primes 𝑝 (with 𝜌𝐸,𝑝 irreducible) that might divide the GCD of indexes, and the
third column gives the discriminant used to make this deduction.

Proof. We use the methods described in Section 3.5.5, including computing with
intervals as in Algorithm 3.20. In many cases we combine the explicit computa-
tion of a Heegner point for one prime with the bounding technique explained in
Section 3.5.5, or only compute information using the bound.
For the curve 910e, we used four-descent via Magma to compute the point

(3257919871/16641, 133897822473008/2146689) on the −159 twist 𝐸𝐷, found using
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[Creb] that it generates 𝐸𝐷(ℚ), and obtained an index that is a power of 2 and 3.
Since 3 divides a Tamagawa number, we do not include 910e in our table. Likewise,
for 930f and 𝐷 = −119, we used Magma’s four-descent commands to find a point
of height ∼ 85.3, and deduced that the only odd prime that divides the index is
11; since 11 is a Tamagawa number, we do not include 930f. Similar remarks apply
for 966j with 𝐷 = −143. We were unable to use 4-descent to find a generator for
a twist of 906e1. (Fortunately, 906 = 2 ⋅ 3 ⋅ 151, so Theorem 4.3 implies BSD(𝐸, 𝑝)
except for 𝑝 = 2, 3, 151, and for our purposes we will only need that 151 does not
divide the Heegner point index.) □

Remark 3.33. We may be able to further reduce the number of entries in Table 2 in
Proposition 3.32 by using Magma’s four-descent command. However, we will not
need this for our ultimate application to the BSD conjecture (Theorem 4.4).

Theorem 3.34. Suppose (𝐸, 𝑝) is a pair with 𝐸 a rank 0 non-CM curve of con-
ductor ≤ 1000 and 𝑝 a prime such that 𝜌𝐸,𝑝 is irreducible and 𝑝 does not divide any
Tamagawa number of 𝐸. Then BSD(𝐸, 𝑝) is true except possibly if (𝐸, 𝑝) appears
in Table 2 in the statement of Proposition 3.32, i.e., if 𝐸 appears in column 1 and 𝑝
appears in the column directly to the right of 𝐸.

Proof. The argument is similar to the proof of Theorem 3.31. By Theorem 3.25
we may assume that 𝑝 is odd. Let 𝑆 be the set of pairs (𝐸, 𝑝) in the table in
Proposition 3.32 Let

𝑇 = {(245𝑏, 3), (338𝑑, 3), (352𝑒, 3), (608𝑏, 5), (675𝑑, 5), (675𝑓, 5),
(704ℎ, 3), (722𝑑, 3), (726𝑓, 3), (800𝑒, 5), (800𝑓, 5), (864𝑑, 3),

(864𝑓, 3), (864𝑔, 3), (864𝑖, 3)}.
Then Proposition 3.28, Theorem 1.8, and Theorem 3.4 together imply BSD(𝐸, 𝑝)
for all pairs as in the hypothesis of Theorem 3.34, except the pairs in 𝑆 ∪ 𝑇 , since
the representation 𝜌𝐸,𝑝 is surjective and we have verified that 𝑝 ∤ [𝐸(𝐾) : ℤ𝑦𝐾 ] for
some 𝐾. We eliminate the pairs (722𝑑, 3) and (726𝑓, 3) from consideration because
in each case 𝑝 ∣∏ 𝑐ℓ.
For each (𝐸, 𝑝) ∈ 𝑇 the representation 𝜌𝐸,𝑝 is irreducible and 𝐸 does not have

CM. Next, for each pair (𝐸, 𝑝) ∈ 𝑇 except for (722𝑑, 3) and (726𝑓, 3), which we
already eliminated, we find a 𝐾 that satisfies all the hypotheses of Theorem 3.7, so
for each pair (𝐸, 𝑝), we have that 𝑝 ∤ #Ш(𝐸); hence BSD(𝐸, 𝑝) is true. □

3.6.4. Three-descent. We sharpen Theorem 3.34 using Stoll’s 3-descent package (see
[Sto05]).

Proposition 3.35. We have 3 ∤ #Ш(𝐸) for each of the curves listed in Table 2 in
Proposition 3.32 with 3 in the second column and 𝜌𝐸,3 irreducible, except for 681𝑏
where #Ш(𝐸)[3∞] = 9.

Proof. We use Stoll’s package [Sto05] to compute each of the Selmer groups

Sel(3)(𝐸) ∼=Ш(𝐸)[3]

and obtain the claimed dimensions. For 𝐸 the curve 681b, that #Ш(𝐸)[3∞] =
9 follows by applying Theorem 3.4 with 𝐾 = ℚ(

√−8), and noting that 𝜌𝐸,3 is
surjective and the index of the Heegner point 𝑦𝐾 in 𝐸(𝐾)/ tor is exactly divisible
by 3. □
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Remark 3.36.

(1) In the case of 681b, one can alternatively use [CM00] and [AS05, App.]
instead of an explicit 3-descent to see that 9 ∣ #Ш(𝐸).

(2) When computing class groups in Stoll’s package one must take care to not
assume any unproven conjectures that speed up class group computations
(by modifying the call to ClassGroup in 3descent.m).

4. The Kato bound

The following theorem bounds Ш(𝐸) from above when 𝐿(𝐸, 1) ∕= 0.
Theorem 4.1 (Kato). Let 𝐸 be an optimal elliptic curve over ℚ of conductor 𝑁 ,
and let 𝑝 be a prime such that 𝑝 ∤ 6𝑁 and 𝜌𝐸,𝑝 is surjective. If 𝐿(𝐸, 1) ∕= 0, then
Ш(𝐸) is finite and

ord𝑝(#Ш(𝐸)) ≤ ord𝑝
(
𝐿(𝐸, 1)

Ω𝐸

)
.

This theorem follows from the existence of an “optimal” Kato Euler system (see
[Kat04], [Rub98, Cor. 8.9] and [MR04]). The precise statement in Theorem 4.1
follows from the discussion in Sections 8.1 and 8.3 of [SW08]. See also [Gri05] for
further discussion and recent results on lower bounds on #Ш(𝐸) that make use of
optimal Kato Euler systems. In addition, [SW08] gives a bound that also applies
in the case when 𝜌𝐸,𝑝 is reducible.

4.1. Computations. When 𝐿(𝐸, 1) ∕= 0 the group Ш(𝐸) is finite. Therefore,

ord𝑝(#Ш(𝐸)) is even. Thus if ord𝑝

(
𝐿(𝐸,1)
Ω𝐸

)
is odd, we conclude that

ord𝑝(#Ш(𝐸)) ≤ ord𝑝
(
𝐿(𝐸, 1)

Ω𝐸

)
− 1.

Lemma 4.2. There are no pairs (𝐸, 𝑝) that satisfy the conditions of Theorem 4.1
with 𝑁 ≤ 1000, such that

ord𝑝(#Ш(𝐸)an) < ord𝑝

(
𝐿(𝐸, 1)

Ω𝐸

)
− 1.

Proof. First we use the table allbsd from [Crea] to make a table of ratios
𝐿(𝐸, 1)/Ω𝐸 for all curves of conductor ≤ 1000. For each of these with 𝐿(𝐸, 1) ∕= 0,
we factor the numerator of the rational number 𝐿(𝐸, 1)/Ω𝐸. We then observe that
the displayed inequality in the statement of the proposition does not occur. □

Theorem 4.3. Suppose (𝐸, 𝑝) is a pair such that 𝑁 ≤ 1000, 𝑝 ∤ 3𝑁 , 𝐸 is a non-CM
elliptic curve of rank 0, and 𝜌𝐸,𝑝 is irreducible. Then BSD(𝐸, 𝑝) is true.

Proof. The statement for 𝑝 = 2 follows from Theorem 3.25.
Let 𝑆 be the set of pairs (𝐸, 𝑝) as in the statement of Theorem 4.3 for which 𝐸

is optimal and 𝑝 > 2. By Theorem 1.8 it suffices to prove that 𝑝 ∤ #Ш(𝐸) for
all (𝐸, 𝑝) ∈ 𝑆. Using Proposition 2.5 with 𝐴 = 1000, we compute for each rank 0
non-CM elliptic curve of conductor 𝑁 ≤ 1000, all primes 𝑝 ∤ 6𝑁 such that 𝜌𝐸,𝑝
might not be surjective. This occurs for 53 pairs (𝐸, 𝑝), with the 𝐸’s all distinct.
For these 53 pairs (𝐸, 𝑝), we find that the representation 𝜌𝐸,𝑝 is reducible (since
there is an explicit 𝑝-isogeny listed in [Cre97]), except for the pair (608𝑏, 5), for
which 𝜌𝐸,5 is irreducible.
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Thus Theorem 4.1 implies that for each pair (𝐸, 𝑝) ∈ 𝑆, except (608𝑏, 5), we
have the bound

ord𝑝(#Ш(𝐸)) ≤ ord𝑝(𝐿(𝐸, 1)/Ω𝐸).
By Theorem 1.5, ord𝑝(#Ш(𝐸)) is even, so Ш(𝐸)[𝑝∞] is trivial whenever

ord𝑝(𝐿(𝐸, 1)/Ω𝐸) ≤ 1.
By Theorem 1.8, ord𝑝(#Ш(𝐸)an) = 0 for all 𝑝 ≥ 5. Thus by Lemma 4.2,
there are no pairs (𝐸, 𝑝) ∈ 𝑆 with ord𝑝(𝐿(𝐸, 1)/Ω𝐸) > 1 (since otherwise some
ord𝑝(#Ш(𝐸)an) would be nontrivial).
Finally, let 𝐸 be the curve 608b and 𝑝 = 5. Since 𝐸 admits no 5-isogeny (see

[Cre97]), 𝜌𝐸,5 is irreducible. Also, 5
2 ∤ 608, so for any Heegner 𝐾 of discriminant

coprime to 5 we can apply Theorem 3.5. Taking 𝐾 = ℚ(
√−79), we find that the

odd part of [𝐸(𝐾) : ℤ𝑦𝐾 ] is 1, so 5 ∤ #Ш(𝐸/𝐾). It follows that 5 ∤ #Ш(𝐸), so
BSD(𝐸, 5) is true, according to Theorem 1.8. This completes the proof. □
4.2. Combining Kato and Kolyvagin. In this section we bound Ш(𝐸) for
rank 0 curves by combining the Kato and Kolyvagin approaches.

Theorem 4.4. Suppose 𝐸 is a non-CM elliptic curve of rank 0 with conductor
𝑁 ≤ 1000, that 𝜌𝐸,𝑝 is irreducible, and that 𝑝 does not divide any Tamagawa
number of 𝐸. Then BSD(𝐸, 𝑝) is true.

Proof. Let (𝐸, 𝑝) be as in the hypotheses to Theorem 4.4. By Theorem 4.3,
BSD(𝐸, 𝑝) is true, except possibly if 𝑝 ∣ 3𝑁 . Theorem 3.34 implies BSD(𝐸, 𝑝),
except if (𝐸, 𝑝) appear in Table 2 of Proposition 3.32. Inspecting the table, we see
that whenever a prime 𝑝 ≥ 5 is in the second column, then 𝑝 does not divide the
conductor 𝑁 of 𝐸. This proves BSD(𝐸, 𝑝) for 𝑝 ≥ 5.
Let 𝐸 be the curve 681b. Then BSD(𝐸, 3) asserts that #Ш(𝐸)[3∞] = 9, which

follows from Proposition 3.35.
Finally Proposition 3.35 implies BSD(𝐸, 3) for the remaining curves, which

proves the theorem. □

5. Proof of Theorem 3.7

In this section we prove Theorem 3.7. Assume that 𝐸 and 𝐾 are as in the state-
ment of the theorem, and assume that ord𝑠=1 𝐿(𝐸/𝐾, 1) = 1. Then the Heegner
point 𝑦𝐾 has infinite order. Kolyvagin ([Kol90]) shows that in this case the rank
of 𝐸(𝐾) is 1 and Ш(𝐸/𝐾) is finite.

5.1. Gross’s account. Gross’s account of Kolyvagin’s work in [Gro91] contains a
proof of the following theorem:

Theorem 5.1. Suppose that 𝐸 is an elliptic curve over ℚ that does not have com-
plex multiplication, that 𝐾 is a quadratic imaginary field that satisfies the Heegner
hypothesis such that 𝑦𝐾 has infinite order, and that 𝑝 is an odd prime such that
𝜌𝐸,𝑝 : Gal(ℚ/ℚ)→ Aut(𝐸[𝑝]) is surjective and 𝑝 ∤ [𝐸(𝐾)/𝑡𝑜𝑟 : ℤ𝑦𝐾 ]. Then

𝑝 ∤ #Ш(𝐸/𝐾).

Our Theorem 3.7 provides a better bound in that it relaxes the surjectivity
hypothesis on 𝜌𝐸,𝑝. Gross uses surjectivity of 𝜌𝐸,𝑝 as a hypothesis only to prove
the following two propositions. We will prove analogous propositions below, but
under weaker hypotheses, which yields our claimed improvement to [Gro91].
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Proposition 5.2 (Gross). Assume that 𝜌𝐸,𝑝 is surjective. For any integer 𝑛, let
𝐾𝑛 be the ring class field of 𝐾 of conductor 𝑛. The restriction map

(5.1) Res : H1(𝐾,𝐸[𝑝])→ H1(𝐾𝑛, 𝐸[𝑝])
Gal(𝐾𝑛/𝐾)

is an isomorphism.

Proof. This proposition is implicit in [Gro91, p. 241]. By [Gro91, Lemma 4.3], the
fact that 𝜌𝐸,𝑝 is surjective implies that 𝐸(𝐾𝑛)[𝑝] = 0. That 𝐸(𝐾𝑛)[𝑝] = 0 implies

that H0(𝐾𝑛/𝐾,𝐸[𝑝](𝐾𝑛)) = H
2(𝐾𝑛/𝐾,𝐸[𝑝](𝐾𝑛)) = 0, so the inflation-restriction-

transgression sequence then implies that Res is an isomorphism. □

Let 𝐿 = 𝐾(𝐸[𝑝]) and consider the pairing

(5.2) H1(𝐾,𝐸[𝑝])⊗Gal(𝐿/𝐾)→ 𝐸[𝑝]

given by

(𝑐, 𝜎) = res𝐿(𝑐)(𝜎).

Gross also uses surjectivity of 𝜌𝐸,𝑝 when proving that the pairing (5.2) is nonde-
generate, as follows. Setting 𝐿 = 𝐾(𝐸[𝑝]), we have that

H1(𝐿/𝐾,𝐸(𝐿)[𝑝])→ H1(𝐾,𝐸[𝑝])→ H1(𝐿,𝐸[𝑝])Gal(𝐿/𝐾) → H2(𝐿/𝐾,𝐸(𝐿)[𝑝]).

To see that the pairing is nondegenerate, it suffices to know that the groups
H𝑖(𝐿/𝐾,𝐸[𝑝]) vanish for 𝑖 = 1, 2. This is because we have

H1(𝐿,𝐸[𝑝])Gal(𝐿/𝐾) = Hom(𝐺𝐿, 𝐸[𝑝])
Gal(𝐿/𝐾)

since 𝐾(𝐸[𝑝]) ⊂ 𝐿 and the pairing is (𝑐, 𝜎) = res𝐿(𝑐)(𝜎). Thus nondegeneracy of
the pairing then follows from Proposition 5.3 below. The hypotheses are satisfied
since gcd(𝐷,𝑁𝑝) = 1, so the fields 𝐾 and ℚ(𝐸[𝑝]) are linearly disjoint; hence

Gal(𝐾(𝐸[𝑝])/𝐾) ∼= Gal(ℚ(𝐸[𝑝])/ℚ) ∼= GL2(𝔽𝑝).
Proposition 5.3 (Gross). Let 𝐸 be an elliptic curve over any number field 𝐾
and let 𝑝 be an odd prime. Assume that the mod 𝑝 Galois representation 𝜌𝐸,𝑝 :

Gal(ℚ/𝐾)→ GL2(𝔽𝑝) is surjective. Then H
𝑖(𝐾(𝐸[𝑝])/𝐾,𝐸[𝑝]) = 0 for all 𝑖 ≥ 1.

Proof. This proposition is implicit in [Gro91, pp. 249–250] and is proved in [Ste02,
p. 146], but for the convenience of the reader we give a proof here. Set 𝐿 =
𝐾(𝐸[𝑝]). If 𝑍 ⊂ 𝐺 is the subgroup corresponding to the scalars in GL2(𝔽𝑝), then
the Hochschild-Serre spectral sequence implies that

H𝑖(𝐺/𝑍,H𝑗(𝑍,𝐸(𝐿)[𝑝])) =⇒ H𝑖+𝑗(𝐿/𝐾,𝐸(𝐿)[𝑝]).

Since #𝑍 = 𝑝−1, and 𝐸(𝐿)[𝑝] is a 𝑝-group, and 𝑝 is odd, we have H𝑗(𝑍,𝐸(𝐿)[𝑝]) = 0
for all 𝑗 ≥ 1. Also, since 𝑝 is odd, and since nonidentity scalars have no nonzero
fixed points, H0(𝑍,𝐸(𝐿)[𝑝]) = 0. Thus for all 𝑖, 𝑗 we have

H𝑖(𝐺/𝑍,H𝑗(𝑍,𝐸(𝐿)[𝑝])) = 0,

which implies that the groups H𝑖+𝑗(𝐿/𝐾,𝐸(𝐿)[𝑝]) are all 0. □

Thus our goal is to prove analogues of Propositions 5.2–5.3 under hypotheses
that are more amenable to computational verification.
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5.2. Analogue of Proposition 5.2. In this section we verify that

H𝑖(𝐾𝑛/𝐾,𝐸(𝐾𝑛)[𝑝]) = 0

for all 𝑖 ≥ 0 under a simple condition on 𝑝-torsion over 𝐾. As in the proof of
Proposition 5.2, the inflation-restriction-transgression sequence then implies that
the res map (5.1) is an isomorphism.

Proposition 5.4. Let 𝐸 be an elliptic curve over ℚ and 𝐾 be a quadratic imaginary
extension of ℚ. Assume that 𝑝 is a prime with 𝑝 ∤ #𝐸(𝐾)tor and if 𝑝 = 3 assume
that 𝐾 ∕= ℚ(𝜁3). Then for every finite abelian extension 𝐿 of 𝐾 we have

H𝑖(𝐿/𝐾,𝐸(𝐿)[𝑝]) = 0 for all 𝑖 ≥ 1.
Proof. Write the abelian group Gal(𝐿/𝐾) as a direct sum 𝑃 ⊕ 𝑃 ′, where 𝑃 is its
Sylow 𝑝-subgroup, so 𝑝 ∤ #𝑃 ′. First we show that the subgroup of 𝐸(𝐿)[𝑝] invariant
under 𝑃 ′ is trivial. Let 𝐺 = Gal(𝐿/𝐾)/𝐻, where 𝐻 is the subgroup of Gal(𝐿/𝐾)
that acts trivially on 𝐸(𝐿)[𝑝]. Thus 𝐺 ⊂ Aut(𝐸(𝐿)[𝑝]).
Case 1. If 𝑝 ∤ #𝐺, then 𝑃 ⊆ 𝐻, so 𝑃 ′ surjects onto 𝐺. There is no nonzero element
of 𝐸(𝐿)[𝑝] invariant under Gal(𝐿/𝐾) by our assumption that 𝑝 ∤ #𝐸(𝐾), so the
same holds for 𝑃 ′.

Case 2. If 𝑝 ∣ #𝐺, we cannot have 𝐸(𝐿)[𝑝] = 𝔽𝑝, since 𝔽𝑝 has automorphism group
isomorphic to 𝔽∗

𝑝, of order 𝑝 − 1, but 𝐺 ⊂ Aut(𝐸(𝐿)[𝑝]) and #𝐺 > 𝑝 − 1. Thus,
𝐸(𝐿)[𝑝] is the full 𝑝-torsion subgroup of 𝐸, and we identify 𝐺 with a subgroup of
GL2(𝔽𝑝) acting on 𝐸(𝐿)[𝑝] = 𝔽2𝑝.

We can choose a basis of 𝔽2𝑝 so that 𝐺 contains the subgroup generated by (
1 1
0 1 ).

Since 𝐺 is abelian, it must be contained in the normalizer of this subgroup, so
𝐺 ⊆ {( 𝑎 𝑏0 𝑎 ) : 𝑎 ∈ 𝔽∗

𝑝, 𝑏 ∈ 𝔽𝑝}. We claim that 𝐺 contains an element with 𝑎 ∕= 1.
Since 𝐸[𝑝] = 𝐸(𝐿)[𝑝], the representation Gal(ℚ/𝐾) → Aut(𝐸[𝑝]) factors through
Gal(𝐿/𝐾). The determinant of 𝜌𝐸,𝑝 : 𝐺ℚ → Aut(𝐸[𝑝]) is surjective onto 𝔽∗

𝑝, and

[𝐾 : ℚ] = 2, so the character Gal(𝐾/𝐾)→ 𝔽∗
𝑝 has image of index at most 2 in 𝐹

∗
𝑝 .

That is, it contains at least (𝑝− 1)/2 elements, the squares in 𝔽∗
𝑝. Thus, for 𝑝 > 3,

the group 𝐺 contains an element with nontrivial determinant having the form ( 𝑎 𝑏0 𝑎 )
with 𝑎 ∕= 1. Now, ( 𝑎 𝑏0 𝑎 )

𝑝
= ( 𝑎 00 𝑎 ) since 𝑎, 𝑏 ∈ 𝔽𝑝, so Gal(𝐿/𝐾) contains an element

that acts as a nontrivial scalar. Since the group of scalars in GL2(𝔽𝑝) has 𝑝 − 1
elements, this nontrivial scalar must be in 𝑃 ′, so 𝐸(𝐿)[𝑝]𝑃

′
= 0.

We have shown in each case that 𝐸(𝐿)[𝑝]𝑃
′
= 0. Because 𝑝 ∤ #𝑃 ′, we have

H𝑖(𝑃 ′, 𝐸(𝐿)[𝑝]) = 0 for all 𝑖 ≥ 1, so for each 𝑖 ≥ 1 there is an exact inflation-
restriction sequence

0→ H𝑖(𝑃,𝐸(𝐿)[𝑝]𝑃
′
)→ H𝑖(𝐿/𝐾,𝐸(𝐿)[𝑝])→ H𝑖(𝑃 ′, 𝐸(𝐿)[𝑝]).

The first group vanishes since 𝐸(𝐿)[𝑝]𝑃
′
= 0, and the third group vanishes as

mentioned above. We conclude that H𝑖(𝐿/𝐾,𝐸(𝐿)[𝑝]) = 0, as claimed.
Finally we deal with the case 𝑝 = 3. The only situation in the above argument

where 𝑝 = 3 is relevant is in Case 2, when 3 ∣ #𝐺. Our hypothesis that 𝐾 ∕= ℚ(𝜁3)
implies that det(𝜌𝐸,3) : Gal(𝐾/𝐾) → 𝔽∗

3 is surjective, since the fixed field of the
kernel of the mod 3 cyclotomic character is ℚ(𝜁3). If we are in Case 2, then the
image of Gal(𝐾/𝐾) in GL2(𝔽3) is contained in {( 𝑎 𝑏0 𝑎 ) : 𝑎 ∈ 𝔽∗

𝑝, 𝑏 ∈ 𝔽𝑝}. Since no
such upper triangular matrix has determinant 2, this contradicts the surjectivity
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of det(𝜌𝐸,3). Thus our hypothesis that 𝐾 ∕= ℚ(𝜁3) implies that Case 2 does not
occur. □
Corollary 5.5. Let 𝐸 be an elliptic curve with 𝑝 ∤ #𝐸(𝐾)tor, where 𝑝 > 3 or,
if 𝑝 = 3, 𝐾 ∕= ℚ(𝜁3). Let 𝐾𝑛 be the ring class field of conductor 𝑛 of 𝐾. Then
H𝑖(𝐾𝑛/𝐾,𝐸(𝐾𝑛)[𝑝]) = 0 for all 𝑖 ≥ 1.
5.3. Analogue of Proposition 5.3.

Lemma 5.6. Let 𝑝 be an odd prime. The determinant of 𝜌𝐸,𝑝 is the cyclotomic
character; hence det(𝜌𝐸,𝑝) is surjective.

Proof. For the convenience of the reader, we give a proof of this very standard fact
here. The Weil pairing induces an isomorphism of Gal(ℚ/ℚ)-modules

𝐸[𝑝] ∧ 𝐸[𝑝] ∼= 𝜇𝑝.

Let 𝜎 ∈ Gal(ℚ/ℚ). Fix a basis {𝑒1, 𝑒2} of 𝐸[𝑝], with respect to which 𝜌𝐸,𝑝(𝜎) has
the form

(
𝑎 𝑏
𝑐 𝑑

)
. Then

𝜎(𝑒1 ∧ 𝑒2) = (𝑎𝑒1 + 𝑐𝑒2) ∧ (𝑏𝑒1 + 𝑑𝑒2) = det(𝜌𝑝(𝜎)) ⋅ 𝑒1 ∧ 𝑒2.

It follows that composition with the determinant gives the cyclotomic character
(i.e., the action of Gal(ℚ/ℚ) on 𝜇𝑝), which is surjective since no nontrivial 𝑝th
roots of unity lie in ℚ. □
By hypothesis, the discriminant disc(𝐾) is divisible by a prime other than 𝑝 and

is coprime to 𝑁 . If 𝐾 were contained in ℚ(𝐸[𝑝]), all primes that ramify in 𝐾 would
ramify in ℚ(𝐸[𝑝]), so they would divide𝑁𝑝, which contradicts our hypothesis. Thus
the quadratic field 𝐾 is linearly disjoint from ℚ(𝐸[𝑝]), so the restriction map

Gal(𝐾(𝐸[𝑝])/𝐾)→ Gal(ℚ(𝐸[𝑝])/ℚ)

is an isomorphism. The action of Gal(𝐾(𝐸[𝑝])/𝐾) on the module 𝐸[𝑝] is through
Gal(ℚ(𝐸[𝑝])/ℚ), so for our application it will suffice to show that for 𝑖 > 0,

H𝑖(ℚ(𝐸[𝑝])/ℚ, 𝐸[𝑝]) = 0.

Let 𝐺 ⊆ Gal(ℚ(𝐸[𝑝])/ℚ) be the image of 𝜌𝐸,𝑝. If 𝑝 ∤ #𝐺, then for 𝑖 > 0 we have

H𝑖(𝐺,𝐸[𝑝]) = 0 since 𝐸[𝑝] is a 𝑝-group. Therefore we may assume that 𝑝 ∣ #𝐺.
By [Ser72, Prop. 15], the image 𝐺 either contains SL2(𝔽𝑝) or is contained in a
Borel subgroup of GL2(𝔽𝑝). First consider the case when 𝐺 contains SL2(𝔽𝑝). By
Lemma 5.6, the determinant det : 𝐺 → 𝔽∗

𝑝 is surjective, so in fact 𝐺 = GL2(𝔽𝑝).
In this case, we already know Propositions 5.2–5.3. Thus we turn next to the case
when 𝐺 is contained in a Borel subgroup.

Lemma 5.7. Assume that 𝐺 is contained in a Borel subgroup of GL2(𝔽𝑝). More-

over, assume that there is a basis of 𝐸[𝑝] so that 𝐺 acts as
( 𝜒 ∗
0 𝜓

)
where 𝜒 and 𝜓

are nontrivial characters. Then H𝑖(𝐺,𝐸[𝑝]) = 0 for all 𝑖 ≥ 0.
Proof. Let 𝑊 = ( 1 ∗

0 1 ) be the unique 𝑝-Sylow subgroup of (
∗ ∗
0 ∗ ) ⊂ GL2(𝔽𝑝). We

may assume 𝑊 ⊂ 𝐺, for otherwise 𝐺 has order prime to 𝑝, and the cohomology
vanishes.
We begin by explicitly computing H𝑗(𝑊,𝐸[𝑝]) using the fact that 𝑊 is cyclic,

generated by 𝑤 = ( 1 1
0 1 ). Recall that for cyclic groups we can compute cohomology

using the projective resolution

⋅ ⋅ ⋅ → ℤ[𝑊 ]→ ℤ[𝑊 ]→ ℤ → 0,
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where the boundary maps alternate between multiplication by 𝑤−1 and Norm(𝑤) =∑𝑝−1
𝑖=0 𝑤

𝑖.
Then we see that

H𝑗(𝑊,𝐸[𝑝]) =

{
Ker(1− 𝑤)/ Im(Norm(𝑤)) = ⟨( 10 )⟩ , if 𝑗 is even,

Ker(Norm(𝑤))/ Im(1− 𝑤) = 𝔽2𝑝/ ⟨( 10 )⟩ , if 𝑗 is odd.

Since 𝜒 and 𝜓 are nontrivial by assumption, the 𝐺/𝑊 -invariants for both of these
groups are trivial. Thus H𝑗(𝑊,𝐸[𝑝])𝐺/𝑊 = 0 for 𝑗 ≥ 0. Consider the Hochschild-
Serre spectral sequence

H𝑖(𝐺/𝑊,H𝑗(𝑊,𝐸[𝑝]))⇒ H𝑖+𝑗(𝐺,𝐸[𝑝]).

For 𝑖 > 0, since #(𝐺/𝑊 ) is prime to 𝑝, and H𝑗(𝑊,𝐸[𝑝]) is a 𝑝-group for all 𝑗,
the group H𝑖(𝐺/𝑊,H𝑗(𝑊,𝐸[𝑝])) is trivial. But when 𝑖 = 0 we have just computed
that H𝑖(𝐺/𝑊,H𝑗(𝑊,𝐸[𝑝])) = H𝑗(𝑊,𝐸[𝑝])𝐺/𝑊 = 0, so the entire spectral sequence
is trivial, and we conclude that H𝑛(𝐺,𝐸[𝑝]) = 0 for all 𝑛 ≥ 0. □

In this section we show how the vanishing of H𝑖(ℚ(𝐸[𝑝])/ℚ, 𝐸[𝑝]) follows from
a statement about torsion and rational isogenies.
Note that 𝐸 has no ℚ-rational 𝑝-isogeny if and only if 𝜌𝐸,𝑝 is irreducible.

Proposition 5.8. If 𝑝 is an odd prime and 𝐸 has no ℚ-rational 𝑝-isogeny, then
H𝑖(ℚ(𝐸[𝑝])/ℚ, 𝐸[𝑝]) = 0 for all 𝑖 > 0.

Proof. Our hypothesis that 𝐸 has no ℚ-rational 𝑝-isogeny implies that 𝜌𝐸,𝑝 is
irreducible. As we already noted, the problem reduces to the case when either 𝐺
is contained in a Borel subgroup or 𝐺 = GL2(𝔽𝑝). The latter case follows from
Proposition 5.3. The former case contradicts the hypothesis since the module 𝐸[𝑝]
is reducible as a module over a Borel subgroup. □
For the above result, we used the irreducibility of the representation to deal with

the case when 𝐺 was contained in a Borel subgroup. The following proposition
completes the proof of the general case:

Proposition 5.9. Suppose 𝑝 is an odd prime and that 𝐸(ℚ)[𝑝] = 0 and for all
elliptic curves 𝐸′ that are 𝑝-isogenous to 𝐸 over ℚ we have 𝐸′(ℚ)[𝑝] = 0. Then

H𝑖(ℚ(𝐸[𝑝])/ℚ, 𝐸[𝑝]) = 0 for all 𝑖 > 0.

Proof. If 𝐸 admits no 𝑝-isogeny, then Proposition 5.8 implies the required vanishing.
Thus we may assume that 𝐸 admits a rational 𝑝-isogeny, so 𝐸[𝑝] is reducible, and
𝐺 = Im(𝜌𝐸,𝑝) is contained in a Borel subgroup. In particular, for some basis of

𝐸[𝑝], the image 𝐺 acts as
( 𝜒 ∗
0 𝜓

)
for characters 𝜒 and 𝜓. If both 𝜒 and 𝜓 are

nontrivial, then Lemma 5.7 implies the proposition and we are done. Thus assume
that either 𝜒 or 𝜓 is trivial.
First suppose that 𝜒 is trivial. Then all matrices of the above form fix ( 10 ).

Therefore there is a point of 𝐸[𝑝] fixed by the action of 𝐺, which contradicts the
assumption that 𝐸(ℚ)[𝑝] = 0.
Next suppose that 𝜓 is trivial. Matrices of the above form preserve the line gen-

erated by ( 10 ), so this line forms a Gal(ℚ/ℚ)-stable subspace of 𝐸[𝑝]. In particular,
there exists an isogeny over ℚ to a curve 𝐸′ having this line as kernel. The image
under this isogeny of the line generated by ( 01 ) is a 1-dimensional subspace of 𝐸

′[𝑝],
and since 𝜓 = 1, Gal(ℚ/ℚ) acts trivially on this subspace (we have an isomorphism
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of Galois modules 𝐸/ ⟨( 10 )⟩ ∼= 𝐸′). Thus, 𝐸′(ℚ)[𝑝] is nontrivial, contradicting our
assumption. □
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