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Abstract

The effects of heterogeneity in group composition remain a major hurdle to our understand-

ing of collective behavior across disciplines. In social insects, division of labor (DOL) is an

emergent, colony-level trait thought to depend on colony composition. Theoretically, behav-

ioral response threshold models have most commonly been employed to investigate the

impact of heterogeneity on DOL. However, empirical studies that systematically test their

predictions are lacking because they require control over colony composition and the ability

to monitor individual behavior in groups, both of which are challenging. Here, we employ

automated behavioral tracking in 120 colonies of the clonal raider ant with unparalleled con-

trol over genetic, morphological, and demographic composition. We find that each of these

sources of variation in colony composition generates a distinct pattern of behavioral organi-

zation, ranging from the amplification to the dampening of inherent behavioral differences in

heterogeneous colonies. Furthermore, larvae modulate interactions between adults, exac-

erbating the apparent complexity. Models based on threshold variation alone only partially

recapitulate these empirical patterns. However, by incorporating the potential for variability

in task efficiency among adults and task demand among larvae, we account for all the

observed phenomena. Our findings highlight the significance of previously overlooked

parameters pertaining to both larvae and workers, allow the formulation of theoretical pre-

dictions for increasing colony complexity, and suggest new avenues of empirical study.

Introduction

The study of collective behavior and self-organization is an active area of research across fields,

from animal movement [1] to robotics [2], from tissue engineering [3] to public health [4],

and from voting [5] to conservation [6]. Despite considerable theoretical and empirical
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advances, however, our understanding remains limited by a poor grasp on the impacts of het-

erogeneity in group composition on collective organization. This limitation stems from the

difficulty in precisely controlling the sources of heterogeneity and rigorously and comprehen-

sively measuring their impacts experimentally. This empirical challenge, in turn, has hindered

the systematic testing and refining of the conceptual and theoretical frameworks employed to

investigate the mechanisms underlying the collective dynamics.

The colonies of social insects are striking examples of highly integrated, complex biological

systems that can self-regulate without centralized control [7]. Consequently, social insects have

emerged as powerful systems to study collective behavior and social dynamics, both experi-

mentally and theoretically [8–12]. An emergent, colony-level trait that has long been thought

to depend on colony composition (e.g., in age, genotype, or morphology) is division of labor

(DOL), the nonrandom interindividual variation in task performance among members of a

social group that is consistent over time [13,14]. However, few experimental studies have com-

prehensively measured this dependence because the inherent complexity of social insect colo-

nies usually renders their composition intractable: A typical social insect colony consists of 1

or more queens, dozens to thousands of workers of different (and often unknown) age, geno-

type, and morphology, and various brood development stages. This difficulty in controlling

and replicating colony composition has hampered attempts to systematically test and refine

the theoretical framework for collective organization in insect societies. Consequently, we

have a limited understanding of how colony composition affects individual behavior and the

emergent DOL, which, in turn, limits our understanding of the evolution of collective organi-

zation [15].

While several proximate mechanisms have been proposed to explain DOL in social insects

(see [14] for a review), the “vast majority of studies on the impact of variability on colony

behaviour have so far focused on the distribution of individual response thresholds and how

this distribution affects the collective response behaviour” (see [16], p. 679). In this framework,

colony members are assumed to differ in their response thresholds, i.e., in their propensity to

respond to task-specific stimuli indicating the group-level demand for a given task [17–23].

Individuals with lower thresholds perform the corresponding task more readily than individu-

als with higher thresholds. Stimulus intensity, in turn, decreases with the number, efficiency,

and time investment of individuals performing the task. With this negative feedback loop,

response thresholds offer a simple mechanism for both robust and flexible allocation of indi-

viduals to tasks [14]. While refinements of response threshold models have included a self-

reinforcement mechanism, whereby thresholds are modulated through experience such that

individuals become more likely to perform a task that they have already performed [14,24],

DOL can emerge in the absence of threshold reinforcement so long as individuals differ in

their response thresholds. Indeed, the simplest version of the model, which only assumes

intrinsic (i.e., fixed) variation in individual thresholds, has been successful in recapitulating

certain empirically observed patterns of DOL [11,25–31].

Empirically, worker behavior in social insect colonies often correlates with individual traits

[16]. For example, within a colony, workers of different age [32–35], experience [36], genotype

[37] (e.g., patrilines [38,39] or matrilines [40]), or morphology (e.g., size [38,41–44]) can vary

in their propensity to engage in tasks such as foraging, nursing, or nest construction. Such

behavioral variation is often attributed to the developmental or genetic modulation of response

thresholds. However, empirical evidence suggests that response thresholds are only one of sev-

eral axes of possible individual variation. For example, workers can also vary in the efficiency

with which they perform tasks [45–47] or in the average time spent performing a given task

[48]. These empirical findings suggest that previously underexplored parameters may vary

depending on developmental or genetic factors and may play a role in colony organization.
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This possibility has led to recent calls for a diversity of parameters to be considered when

investigating the relationship between colony composition and DOL [16,49,50].

Here, we combine theoretical modeling with behavioral tracking experiments in the clonal

raider ant, Ooceraea biroi, to both assess the explanatory power of existing behavioral response

threshold models and explore other axes of individual variation. The unique biology of this

species affords unparalleled control over the main axes of colony composition that are thought

to affect individual- and group-level behavior in social insects: genotype, age, and morphology.

Specifically, colonies of clonal raider ants are naturally queenless and exclusively composed of

workers that all reproduce asexually and synchronously, so that all adults within a colony are

genetically almost identical and emerge in discrete age cohorts. Furthermore, individuals show

variation in ovariole number that is associated with body size and other morphological fea-

tures [51], making it possible to approximately sort individuals into “regular workers” (2 to 3

ovarioles) and “intercastes” (4 to 6 ovarioles) based on their size [51]. Intercastes typically rep-

resent a small fraction (3.7% to 6.3% [52]) of individuals in unmanipulated colonies, but colo-

nies with higher fractions of intercastes (50% or more) do occur occasionally and are

functional [51]. Conveniently, workers of different clonal genotypes, age cohorts, and mor-

phologies can be mixed to create functional chimeric experimental colonies [51]. Additionally,

colony behavior is controlled by larvae [27,53,54], which solicit food and care from the work-

ers and induce them to forage. This means that colony-level task demand can be standardized

or manipulated across colonies by controlling larvae number or, potentially, genotype. Finally,

while colonies collected in the field contain between approximately a dozen and several hun-

dred workers [55–57], smaller colonies of approximately 10 workers have high fitness and

show complex collective behavior (e.g., group raiding [58], stable DOL, and phasic reproduc-

tion [27]) in the laboratory. Taking advantage of these features, we quantify individual and col-

lective behavior of O. biroi in response to precise, independent manipulations of colony

genetic, morphological, and demographic composition, as is uniquely possible in this system.

Results and discussion

Theoretical model

We adopt the simplest and most commonly employed formulation of the response threshold

model, which assumes that individual thresholds do not change over time [18]. We consider a

colony of n individuals, NX of which are of type X and NY = n - Nx are of type Y. Types X and

Y represent any pair of the experimentally manipulated subcolony compositions (i.e., geno-

types A and B, Young and Old, or Regular Workers and Intercastes). The colony must perform

m tasks; for consistency with the experimental approach (see below), we assume that there are

2 tasks (m = 2). At a given time step, an individual can be either performing one of the m tasks

(active) or not performing any (inactive). The task state of individual i at time t is given by the

binary variable xij,t: If individual i is active and performing task j at time t, then xij,t = 1 and

xij’,t = 0 for all j’ 6¼ j; if individual i is inactive and resting, then xij,t = 0 for all j.
Each task j has an associated stimulus sj,t, signaling the group-level demand for that task.

The stimulus for a task changes depending on the rate at which the demand increases (e.g., the

demand for foraging increases due to increased hunger in the colony), the efficiency with

which workers perform the task (e.g., more efficient foragers decrease hunger faster), and the

number of individuals performing the task. Mathematically, the stimulus sj,t is governed by Eq

(1):

sj;tþ1 ¼ sj;t þ dj �
aX

j nX
j;t þ a

Y
j nY

j;t

n
; ð1Þ
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where δj is the task-specific demand rate, taken to be constant over time; αj
X (respectively, αj

Y)

is the task-specific performance efficiency (i.e., the rate with which an individual decreases

stimulus intensity by performing the corresponding task) of type X (respectively, type Y) indi-

viduals; and nX
j;t ¼

PNX
i¼1

xij;t and nY
j;t ¼

Pn
i¼NXþ1

xij;t are the numbers of type X and Y individuals

performing task j at time t, respectively. We assume that individuals i = 1, . . ., NX are of type X

and individuals i = NX + 1, . . ., n are of type Y.

Each individual i is assumed to have an internal threshold for each task j, θij, drawn at time

t = 0 from a normal distribution with mean μj and normalized standard deviation σj (i.e.,

expressed as a fraction of the corresponding mean μj). Thus, an individual can, and typically

does, have different thresholds for different tasks. Although thresholds may change over the

individuals’ lifetime [59], they are assumed to be fixed over the timescale of the experiments

and, consequently, over the simulation runs. We refer to μj as the mean task threshold (or

mean threshold) and to σj as the threshold variance for task j; each can be type and/or task spe-

cific (i.e., μj
X, μj

Y, σj
X, σj

Y).

At each time step, inactive individuals assess the m task stimuli in a random sequence until

they either begin performing a task or have encountered all stimuli without landing on a task.

For each encountered stimulus, individual i evaluates whether to perform the task by compar-

ing the stimulus level to its internal threshold. Specifically, given stimulus sj,t and internal

threshold θij, individual i commits to performing task j with probability

Pij ¼
sZij

sZij þ y
Z

ij

; ð2Þ

where parameter η governs the steepness of this response threshold function. The larger the

value of η, the more deterministic the behavior; in the limit η!1, the response function

becomes a step function. Active individuals spontaneously quit their task with a constant quit

probability τ. Active individuals can neither evaluate stimuli nor switch tasks without first

quitting their current task.

Each agent-based simulation began with both stimuli set to 0 (i.e., sj,t = 0 for j = 1, 2) and

lasted T = 10,000 time steps (see S1 Table for parameter settings).

Baseline model predictions

To establish baseline predictions for ant colonies with different compositions, we use the sim-

plest implementation of this model, which assumes that ant types differ only in mean response

threshold [18]. We simulated colonies that were either homogeneous (pure), with a single type

of ant, or heterogeneous (mixed), with two types in equal proportions. The individual thresh-

olds for each type were drawn from a normal distribution with the type-specific mean (μj
X =

μX or μj
Y = μY). All other model parameters—task performance efficiency, demand rate, and

threshold variance—were constant across types. Thus, the only source of heterogeneity in pure

colonies was the distribution of individual response thresholds, while in mixed colonies that

heterogeneity was compounded by differences in the means of the type-specific distributions.

To quantify individual behavior, we computed each individual’s task performance fre-

quency for each task, defined as the fraction of time that an individual spent performing a

given task. For example, if an ant spent 2,000 time steps performing task 1 (e.g., foraging),

4,000 performing task 2 (e.g., nursing), and the remaining 4,000 being inactive in a simulation

of 10,000 time steps, then it had a task 1 performance frequency of 0.2 and a task 2 perfor-

mance frequency of 0.4. To quantify the mean behavior of ants in a given colony for a given

task, we then averaged the individual task performance frequencies for that task across all indi-

viduals in that colony. In a mixed colony, we also quantified the type-specific mean behavior
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for a given task by taking the average across all individuals of a given type in the colony instead.

To quantify DOL, we measured two colony-level properties: behavioral variation, defined as

the standard deviation of task performance frequency across all individuals in a colony; and

specialization, defined as the mean correlation in individual task performance frequencies

across time, measured as the Spearman rank correlation on consecutive windows of 200 time

steps. Thus, specialization measures how consistent ants in a colony are in their task perfor-

mance relative to each other.

In pure colonies, there is a single normal distribution of individual thresholds for a given

task. In contrast, mixed colonies have a bimodal distribution of thresholds for each task, with

the thresholds of the two types clustered around the different modes. This wider distribution

of thresholds resulted in both greater behavioral variation (because individuals from the lower

end of the distribution for a task are more sensitive to the stimulus for that task, they tended to

perform that task more often than those from the higher end) and greater colony-level speciali-

zation (those performing a task in a given time step are likely to be from the lower end of the

distribution and therefore also likely to be performing that task in a future time step) relative

to pure colonies, resulting in more pronounced DOL (Fig 1A and 1B). However, all colonies,

irrespective of their composition, had the same mean behavior (Fig 1C). This is because while

colonies may differ in how they allocate workers to tasks—within mixed colonies, the two ant

types differed in their mean task performance because the type with the lower average thresh-

old for a given task took up that task more often than the other type—they must perform the

same amount of work overall to satisfy a given demand. Thus, on average, colony members

spent the same fraction of time performing each task across pure and mixed colonies.

In summary, the simple model predicted that (P1) mixed colonies would exhibit higher

overall DOL but that (P2) all colonies would have the same mean behavior (Fig 1C), although

(P3) the two types would diverge behaviorally in mixed colonies (Fig 1C). The same predic-

tions held if, instead of differences in the means of the response thresholds, we assumed differ-

ences in the variances (S1 Fig).

Fig 1. Baseline theoretical predictions. Division of labor (DOL, measured by colony-level behavioral variation (a), colony-level specialization (b)) and task

performance frequency for a single task (c) shown as a function of colony composition. Opaque circles represent individual replicate colonies (n = 100 replicates for each

composition); solid circles represent the average value across replicates; horizontal lines represent s.e.; and the horizontal gray line in (c) represents the average of the

pure colonies (first 2 columns). Types X and Y differ in mean threshold: μX = 10, μY = 20; all other parameters are identical across types (see S1 Table). Simulation code

and data are available at https://github.com/marikawakatsu/mixing-model. DOL, division of labor.

https://doi.org/10.1371/journal.pbio.3001269.g001
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Empirical tests of the theoretical predictions

We then tested these theoretical predictions in experimental colonies that were either pure or

1:1 mixes of clonal raider ants that differed in one of 3 factors thought to influence DOL: geno-

type (A versus B [27,51]), age (around 3-month-old “old” ants versus 1-month-old “young”

ants; the life span of workers in this species is around 1 year), and size (large intercastes versus

smaller regular workers [51]) (S2 Table). Colonies contained larvae of the same genotype as

the workers; in the case of genotype effects, the experiment was performed twice, once with

larvae of each genotype (see Materials and methods). We analyzed individual behavior in 120

experimental colonies using automated tracking [27].

Because work in insect societies is spatially organized (e.g., foraging and waste disposal

occur away from the nest, whereas nursing only occurs at the nest), individual spatial distribu-

tion can be used as a proxy for individual behavioral roles [60–63]. Here, the spatial distribu-

tion of each ant was measured as the two-dimensional root–mean–square deviation (r.m.s.d.)

of its spatial coordinates:

r:m:s:d: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

iððxi � �xÞ2 þ ðyi � �yÞ2Þ
F

s

;

where xi and yi are the coordinates of the focal ant in frame i, �x and �y are the coordinates of

the center of mass of the focal ant’s overall spatial distribution, and F is the number of frames

in which the focal ant was detected. As previously shown [27], the r.m.s.d. of an ant captures

its tendency to leave the nest: workers that spend a lot of time at the nest with the brood (e.g.,

nursing the larvae) and little time performing extranidal tasks (e.g., foraging or waste disposal)

have low r.m.s.d. values, whereas workers that spend more time away from the brood have

higher r.m.s.d. values (Fig 2A). Consequently, the mean r.m.s.d. of a colony reflects its collec-

tive foraging activity, as shown by the fact that r.m.s.d. increases in response to experimentally

inflated nutritional demand [27]. We therefore use the r.m.s.d. as a proxy for the propensity to

perform tasks away from the nest (e.g., foraging) rather than at the nest (e.g., nursing) [27].

Analogously to the simulations, we quantified the mean behavior of a given ant type as the

average r.m.s.d. of all ants of that type in a colony; similarly, to quantify colony-level DOL, we

computed behavioral variation as the standard deviation across r.m.s.d. values of all ants in a

colony and specialization as the mean correlation in individual r.m.s.d. across time, measured

as the Spearman rank correlation on consecutive days in the experiment [27] (see Materials

and methods).

Colonies with different compositions often differed in mean behavior (Fig 2B–2D), incon-

sistent with prediction (P2). For instance, pure colonies of genotype A on average spent more

time at the nest than pure colonies of genotype B (Fig 2B: Bpure versus Apure, LME post hoc

tests: z = 7.75, p = 3.64�10−14; Fig 2C: Bpure versus Apure: z = 7.45, p = 2.80�10−13). Similarly,

colonies of young workers spent more time at the nest than colonies of old workers (Fig 2D:

Oldpure versus Youngpure: z = −6.05, p = 4.39�10−09). That ants of different genotype [38–40]

and age [33,34,64] differ in their task performance is consistent with observations in other

social insects. However, such behavioral differences are theoretically only predicted to emerge

(and have empirically mostly been documented) within mixed colonies (as also observed here:

Fig 2B: Bmixed versus Amixed: z = 4.61, p = 8.06�10−06, Fig 2C: Bmixed versus Amixed: z = 7.68,

p = 6.57�10−14, Fig 2D: Oldmixed versus Youngmixed: z = −13.31, p< 2�10−16), and not across

pure colonies (Fig 1C). Moreover, while the simple model predicted behavioral divergence

between types in mixed colonies relative to pure colonies (P3), experiments produced all possi-

ble outcomes. Most surprisingly, mixing different genotypes resulted in behavioral
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convergence (see definitions in Materials and methods), whereby genotypes behaved more

similarly in mixed colonies than in separation (i.e., across pure colonies) (Fig 2B and 2C). In

contrast, mixing different age cohorts had no detectable effect on mean behavior (henceforth
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Fig 2. Behavior as a function of colony composition. (a) Spatial distributions of 2 ants with high (blue; genotype B)

and low (red; genotype A) activity outside the nest. Arrows point to corresponding r.m.s.d. values. Gray areas

represent the position of the larvae. (b–e) Mean behavior (mean r.m.s.d.) as a function of colony composition. Opaque

circles represent mean behavior across individuals in replicate colonies or subcolonies. Solid circles represent average

behavior across replicate colonies or subcolonies. For mixed colonies, data are shown both as type-specific and colony-

level mean behavior (in “average” color). Sample sizes indicate the number of replicate colonies. Black curly brackets

represent the effect of mixing on behavioral differences between types. (b) Behavioral convergence in genetically mixed

colonies with A brood. Bpure − Apure vs. Bmixed − Amixed: t test: t = 3.86, p = 0.002. (c) Behavioral convergence in

genetically mixed colonies with B brood. Bpure − Apure vs. Bmixed − Amixed: t = 2.63, p = 0.025. (d) No effect of mixing in

demographically mixed colonies. Oldpure − Youngpure vs. Oldmixed − Youngmixed, t = −1.50, p = 0.157. (e) Behavioral

divergence in morphologically mixed colonies. Regular Workerpure − Intercastepure vs. Regular Workersmixed

− Intercastemixed t = −2.44, p = 0.022. n.s., nonsignificant; �, p< 0.05; ��, p< 0.01; ���, p< 0.001. Raw data are

available at doi.org/10.5061/dryad.hx3ffbgdd. r.m.s.d., root–mean–square deviation.

https://doi.org/10.1371/journal.pbio.3001269.g002
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no effect) (Fig 2D). Only mixing regular workers and intercastes produced behavioral diver-

gence as predicted by the simple model: Intercastes spent more time at the nest than regular

workers in mixed colonies (Fig 2E: Regular Workermixed versus Intercastemixed: z = 8.95,

p< 2�10−16) but not in pure ones (Fig 2E: Regular Workerpure versus Intercastepure: z = 2.14,

p = 0.098). Because intercastes have more ovarioles than regular workers, this behavioral dif-

ference is consistent with observations that reproductive potential often negatively correlates

with the propensity to forage [52,65,66].

While in most cases mixing had symmetric effects on behavior—i.e., the behavior of both

types was equally affected (Fig 2D: |Youngmixed − Youngpure| versus |Oldmixed − Oldpure|:

t = 0.94, p = 0.365; Fig 2E: |Regular Workermixed − Regular Workerpure| versus |Intercastemixed

− Intercastepure|: t = −0.68, p = 0.501; see Materials and methods)—we found that asymmetric

effects are also possible: In genetically mixed colonies with A larvae, mixing affected the behav-

ior of A workers more than that of B workers, manifesting in asymmetric behavioral conver-

gence (Fig 2B: |Amixed − Apure| versus |Bmixed − Bpure| t test: t = −3.86, p = 0.002). Such an

asymmetry was not apparent in the presence of B larvae, however (Fig 2C: |Amixed − Apure| ver-

sus |Bmixed − Bpure|: t = 0.53, p = 0.607).

Consistent with these behavioral patterns, mixed colonies had overall higher DOL than

pure colonies in the age and morphology experiments, in line with the baseline model predic-

tion (P1) (S2 and S3 Figs). However, this trend was weakened (i.e., half of the pairwise compar-

isons were not significant) in the genotype experiments by the emergent behavioral

convergence (S2 and S3 Figs), so that mixed colonies did not systematically have higher DOL

than pure colonies in all experiments, violating (P1).

Taken together, our experimental results revealed a greater diversity of behavioral patterns

than predicted by the simple model: Colonies differed in mean behavior, thus violating (P2)

(Fig 2); the direction and magnitude of behavioral changes in mixed colonies depended on the

specific source of workforce heterogeneity, thus violating (P3) (Fig 2); and consequently, DOL

was not necessarily higher in mixed than in pure colonies, thus violating (P1) (S2 and S3 Figs).

Thus, heterogeneity in response thresholds alone was insufficient to explain our observations.

This discrepancy prompted us to consider other biologically realistic sources of heterogeneity

in the model.

An expanded model of DOL

Previous work revealed that the developmental trajectory of O. biroi larvae—i.e., the size of the

resulting adults—depends on nonlinear interactions between the larval genotype and the

genotype of the caregiving adults [51]. This finding suggests (a) that larvae of different geno-

types signal different levels of demand, e.g., for food or care; and (b) that workers of different

genotypes differ in their response to a given level of larval demand, possibly via differences in

their response thresholds or in the efficiency with which they perform the corresponding task.

Indeed, when we added differences in task performance efficiency and in larval-induced task

demand to the simple model (with between-type differences in response thresholds, i.e., con-

sistent variation in threshold across types), we were able to qualitatively recapitulate the phe-

nomena observed in genotype-mixing experiments (Fig 3A and 3B). Differences in task

performance efficiency were, in fact, sufficient to robustly produce both colonies with different

mean behaviors and behavioral convergence in mixed colonies, where the more efficient ants

compensated for the less efficient ones by spending more time performing the task than they

did in pure colonies. By affecting how much more the efficient ants needed to work in the

mixed colonies, the differences in larval-induced task demand determined the asymmetry of

the convergence. In particular, when task demand was so high that the less efficient type could
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not keep up with the demand on their own, we recovered the experimental pattern in Fig 2B

(see Fig 3A; see also stimulus dynamics in S4 Fig and S1 Text). While the simulations assumed,

for simplicity, that the two tasks had the same level of demand, the analytical calculations sug-

gest that varying demand across tasks would produce patterns qualitatively identical to either

Fig 3A or Fig 3B, depending on the demand levels (see S1 Text).

Exploring the efficiency–threshold parameter space broadly recapitulated not only the

behavioral convergence observed in the genotype experiments, but also the divergence and no

effect patterns observed in the morphology and age experiments, respectively (Fig 3C). The

Fig 3. Theoretical predictions of the expanded model. (a, b, d, and e) Task performance frequency for a single task as a function of colony composition. Opaque

circles represent replicate colonies (n = 100 replicates per composition); solid circles represent the average across replicates; horizontal bars represent s.e.; and

horizontal gray lines represent the average of the pure colonies (first two columns). Identical colors indicate ants of the same type; in particular, type Y ants are the

same across all panels (αY = 2, μY = 10). (a and b) Differences in both task efficiency and mean threshold (αX1 = 4.5, μX 1 = 11) capture asymmetric behavioral

convergence, with directionality determined by the demand rate: (a) upward (δ = 1.3) and (b) downward (δ = 0.6). (d and e) Differences in both task efficiency and

mean threshold capture both (d) behavioral divergence (αX3 = 3, μX3 = 15) and (e) a lack of effects from mixing (αX2 = 1.5, μX2 = 7.5). (c) Change in relative task

performance between mixed and pure colonies (measured as (Ym-Xm)-(Yp-Xp)) as a function of type X’s efficiency and mean threshold (n = 50 replicates per

parameter combination). Types X1, X2, X3, and Y correspond to those in a, b, d, and e. Blue gradient indicates behavioral divergence (Ym-Xm>Yp-Xp); brown gradient

indicates convergence (Ym-Xm<Yp-Xp); and light gray indicates regions with behavioral patterns falling outside our definitions (see Materials and methods). See S1

Table for other parameter values. Simulation code and data are available at https://github.com/marikawakatsu/mixing-model.

https://doi.org/10.1371/journal.pbio.3001269.g003
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emergent pattern in mixed colonies depended on the interplay between differences in effi-

ciency, which increased behavioral similarity, and differences in threshold, which decreased

similarity. Manipulating genotypic composition corresponded to regions of the parameter

space with relatively strong effects of differences in efficiency and relatively weak effects of dif-

ferences in threshold (Figs 2A and 2B and 3A and 3B). Manipulating morphological composi-

tion corresponded to regions where differences in threshold had a relatively stronger effect

(Figs 2E and 3D). Finally, manipulating age composition corresponded to an intermediate sce-

nario in which the 2 effects balanced each other out (Figs 2D and 3E). Consistent with the

experiments, DOL was higher in mixed colonies than in pure colonies when threshold effects

were at least as strong as efficiency effects—i.e., in areas of behavioral divergence or no effect—

but not when threshold effects were weaker—i.e., in areas of behavioral convergence (S5 and

S6 Figs).

Conclusions

In most social insect colonies, all factors studied here (worker genotype, age, morphology, and

larval genotype) influence behavior simultaneously and in largely intractable ways. However,

the unique biology of O. biroi allows us to break this complexity down experimentally and

study each effect independently, thereby providing insight into the basic organizing principles

of behavior in social groups. Our finding that the magnitude and direction of effects on DOL

depend on the specific factor being manipulated underscores the importance of considering

and controlling the various sources of heterogeneity that naturally act in social groups in order

to study the different (and possibly opposing) effects that they have on collective organization.

Moreover, our work also underscores the importance of considering factors beyond the usual

suspects (e.g., age and morphology): While larval cues [67] are known to affect worker physiol-

ogy [68,69] and behavior [54,70], our results highlight larvae as important players in the actual

regulation of DOL between workers, something that has rarely been considered. And, on lon-

ger timescales, our findings suggest the need to consider a broader array of factors when inves-

tigating the evolution of DOL [15].

The integrated empirical and theoretical analysis reveals that models based on threshold

variation alone fail to recapitulate the diverse outcomes observed in heterogeneous colonies.

However, consistent with recent calls to expand theoretical investigations to other sources of

heterogeneity [16,49,50], incorporating differences in larval-induced demand and in worker

task performance efficiency, two parameters that, like response thresholds [13,25,71,72], are

known to vary in nature [45–47,73,74], allowed us to recapitulate all empirically observed

behavioral patterns. Importantly, the expanded threshold model could recapitulate these pat-

terns using only simple individual behavioral rules and without invoking social interactions.

For example, behavioral convergence—a phenomenon that intuitively appears to rely on direct

social interactions—could emerge without invoking complex social processes, such as social

learning [75,76] or direct information transfer between group members [77,78]. Although the

theoretical treatment can only suggest candidate mechanisms, it is reassuring that the observed

behaviors are robust and generic, i.e., the parameter values chosen to illustrate the versatility of

the model are representative of large regions of parameter space. Nevertheless, rigorous empir-

ical quantifications of thresholds, efficiency, and demand for realistic task–stimulus pairs—

which have only rarely been attempted [48,71,79] and remain very challenging—are a critical

next step toward bridging the gap between theory and empirical observations.

While we focused on the simplest model that could recapitulate our empirical results, we

recognize that DOL can be influenced by an even broader set of parameters, whose roles

deserve further empirical and theoretical work. For example, experience and social
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interactions [28,80–82] might dynamically change individual thresholds [36] and/or task effi-

ciency [34,83] over time, potentially modulating the effects observed here. It will be important

to consider such effects in future theoretical extensions. At the same time, this simple model

can nevertheless be used to make rich testable predictions for colonies with increasingly com-

plex composition. A first attempt using different ratios of ant types led to a striking range of

patterns even among the four parameter combinations in Fig 3A–3D: The model predicts that

behavior can change linearly or nonlinearly as a function of colony composition depending on

the between-type differences in mean threshold (S7 Fig, S1 Text). In other words, despite one

type of ant being more efficient than the other in all cases considered, replacing an individual

of the former with one of the latter led to proportional, greater-than-proportional, or less-

than-proportional changes in task performance. Testing these predictions empirically will

accelerate the productive crosstalk between theory and experiments.

Our findings add to the growing literature on the role of individual heterogeneity in the col-

lective behavior of complex biological (e.g., schools of fish, neurons in a brain, pathogen strains

sharing a host, etc.) and artificial (e.g., robot swarms, synthetic microbial communities, etc.)

systems. Much like colonies of the clonal raider ant, these systems exhibit patterns that can be

interpreted as behavioral convergence [76,78,84–86], divergence [87], and nonlinear effects of

mixing on group-level phenotypes [88–90]. In turn, these patterns affect important processes

such as collective decision-making [5], the transmission and evolution of disease [91,92], and

the evolution of cooperative behavior [93,94]. While different variants of threshold-based

models have been employed to study several of these systems [95–98], we still lack a unified

theoretical framework to understand the consequences of individual differences on collective

dynamics [99]. Thus, a comparative approach to the study of the basic organizing principles of

heterogeneous systems across scales constitutes an important next step toward understanding

the behavior of complex biological systems.

Materials and methods

Experimental design

Four experiments were performed to investigate the effect of genetic composition (2 experi-

ments differing in the brood genotype used), age composition (1 experiment), and morpholog-

ical composition (1 experiment). Each experiment comprised three treatments (2 with pure

colonies, 1 with mixed colonies; S2 Table). All colonies within one experiment were monitored

in parallel, but the different experiments were performed separately.

Experimental colonies were composed of workers of controlled age, genotype, and mor-

phology (S2 Table), as well as larvae of controlled genotype and age. Colonies were housed in

airtight Petri dishes 5 cm in diameter (corresponding to about 25 ant body lengths) with a plas-

ter of Paris floor, in which the workers formed a nest by freely choosing a location where they

piled their larvae. To control individual genotype, clonally related workers were sourced from

the same stock colony. We used two commonly used genotypes, A and B [27,51,100,101]. To

control individual age, workers were sourced from a single age cohort from the same stock col-

ony. Owing to the synchronized reproduction of O. biroi, all age-matched workers collected

this way had eclosed within a day of each other [57]. Young ants were 1 cycle old (approxi-

mately 1 month old), and old ants were 3 cycles old (approximately 3 months old). The esti-

mated life span of workers of this species under laboratory conditions is approximately 1 year.

To control individual morphology, age-matched regular workers and intercastes from the

same stock colony were screened based on body size (small or large) and the absence or pres-

ence of vestigial eyes, respectively. From the time they were collected (1 to 3 days after eclo-

sion) until the start of experiments, workers of a given type were kept as a group. All workers
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were tagged with color marks on the thorax and gaster using oil paint markers. Experimental

colonies contained 16 (genetic composition and age composition experiments) or 8 (morpho-

logical composition experiment) workers and a matching number of age-matched larvae (4 to

5 days old). This 1:1 larvae-to-workers ratio corresponds to the estimated ratio found in a typi-

cal laboratory stock colony. We used 8 (genetic composition and age composition experi-

ments) or 16 (morphological composition experiment) replicate colonies for each group

composition, for a total of 120 colonies.

Colony number and size varied across experiments due to constraints on the number of

available slots in the tracking system at the time each experiment was performed. However, all

colony sizes employed here were previously shown to have high fitness and stable DOL [27],

and all experiments were analyzed separately so that variation in colony size should not impact

the results.

The experiments took place in a climate room at 25˚C and 75% relative humidity under

constant light (O. biroi is blind, and its behavior is not affected by light). Every three days, we

cleaned and watered the plaster and added one prey item (live pupae of fire ant minor work-

ers) per live O. biroi larva at a random location within the Petri dish.

Behavioral data acquisition and analysis

Image acquisition and analysis were performed as in Ulrich and colleagues [27]. We used an

automated scan sampling approach, in which a picture of each colony was acquired every

approximately 400 seconds throughout the experiment by a custom setup comprising 28 web-

cams (B910 or C910; Logitech, Lausanne, Switzerland) and controlled LED lighting. Each web-

cam acquired images (5 megapixels, RGB) of 4 colonies, and the position of colonies within

the setup was randomized. Custom software (available at https://doi.org/10.5281/zenodo.

1211644) was used to detect individual ants in images. For all behavioral analyses, ants were

excluded from the dataset if they were detected in less than 30% of the frames acquired within

the considered time frame (brood care phase or day); for ants that died during the brood care

phase, the considered time frame was the portion of the brood care phase preceding death.

O. biroi colonies switch between reproductive phases (of approximately 18 days), in which

all workers stay in the nest and lay eggs, and brood care phases (of approximately 16 days), in

which workers nurse the larvae in the nest but also leave the nest to scout, forage, or dispose of

waste. For each colony, behavioral analyses were restricted to the brood care phase, which

started at the beginning of the experiment and ended when all larvae had either reached the

nonfeeding prepupal stage or died.

For each colony or subcolony, mean behavior was computed as the average of individual r.

m.s.d. values, and behavioral variation was computed as the standard deviation of individual r.

m.s.d. values. Both metrics were then compared across treatments.

To quantify specialization, we use a metric appropriate for use on continuous behavioral

data (here, r.m.s.d.). For each colony, specialization was defined as the Spearman correlation

coefficient between individual r.m.s.d. ranks on consecutive days of the brood care phase, aver-

aged over days. Mean rank-correlation coefficients were then compared across treatments.

Statistical analyses

Statistical analyses were performed in R [102] separately for each of the four experiments. As

the experiments were performed at different times using different cohorts of ants, we cannot

rule out “batch” effects and therefore avoid any statistical analyses comparing treatments

across experiments.
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Effects of individual traits on behavior. To evaluate whether type-specific behavior

depended on colony composition, we tested for a statistical interaction between the effects of

individual attributes (genotypes A versus B, Young versus Old, or Regular worker versus Inter-

caste) and of colony composition (pure versus mixed) on individual behavior (individual r.m.

s.d.) using linear mixed effects (LMEs, function lmer of package lme4 [103]) models with col-

ony as a random factor. If a significant interaction between colony composition and individual

attributes was detected, we then used a second LME model with a four-level independent fixed

variable combining colony composition and individual attributes (Xp, Yp, Xm, and Ym, where

Xk and Yk are the mean behavior of ant types X and Y, respectively, in pure (k = p) or mixed

colonies (k = m)), followed by a Tukey post hoc test with Bonferroni–Holm correction (func-

tion glht of package multcomp [104]) for the following planned pairwise comparisons: Xp ver-

sus Xm, Yp versus Ym, Xp versus Yp, and Xm versus Ym. The two models are functionally

equivalent but were used to test different hypotheses regarding interaction between terms

(first model) and pairwise differences between groups (second model). When needed, the

response variable was transformed (r.m.s.d.2 in the genotype experiment with brood of geno-

type A and the age experiment, r.m.s.d3/5 in the genotype experiment with brood of genotype

B; no transformation for the morphology experiment) to satisfy model assumptions. We evalu-

ated the significance of terms by comparing pairs of nested models using χ2 log-likelihood

ratio tests following deletion of the term of interest (the interaction in the first model and the

four-level variable combining colony composition and individual attributes in the second

model) using the function drop1 in R.

Effects of genetic, demographic, and morphological mixing on DOL. The effects of the

treatment (a three-level variable: pure X, pure Y, and mixed XY) on colony-level DOL (behav-

ioral variation and specialization) were investigated using generalized linear models (GLMs).

The significance of treatment was evaluated as above. Pairwise comparisons between treat-

ments were evaluated using Tukey post hoc tests with Bonferroni–Holm correction. Behav-

ioral variation was square root–transformed in the genotype experiment with B larvae to

satisfy model assumptions.

Effects of genetic, demographic, and morphological mixing on behavior. To assess how

type-specific behavior was affected by mixing, and more specifically, whether the difference in

behavior between types of ants was affected by mixing, we compared the difference in mean

behavior (type-specific mean r.m.s.d. in each colony) between types across pure colonies to the

difference in mean behavior between the same types within mixed colonies (i.e., Yp − Xp versus

Ym − Xm, where Yp > Xp and Ym > Xm; see below for definitions of behavioral patterns), using

unpaired t tests, after verifying assumptions of normality. In mixed colonies, the difference in

mean behavior was calculated between types of ants within a colony (e.g., old and young work-

ers from the same colony); in pure colonies, the difference in mean behavior was calculated

between arbitrary pairs of pure colonies (e.g., old workers from the pure colony #1 and young

ants from pure colony #1, where 1 is a replicate number assigned randomly at the beginning of

the experiment). We further tested whether the amplitude of the effect differed across types by

comparing the magnitude of change in type-specific behavior between pure and mixed colo-

nies across the 2 ant types (i.e., |Xm − Xp| 6¼ |Ym − Yp|) with unpaired t tests, after verifying

assumptions of normality.

Definitions of behavioral patterns

We used the following definitions to characterize the qualitative outcomes of mixing individu-

als with different behavioral tendencies on individual behavior. We assume that Yp > Xp and

Ym > Xm, to reflect our observation that the type with higher r.m.s.d. in pure colonies always
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also had higher r.m.s.d. in mixed colonies. Given this assumption, mixing could, in principle,

result in one of the following patterns:

1. No effect of mixing on individual behavior: The mean behavioral difference between types

across pure colonies is the same as the mean behavioral difference between types within

mixed colonies, so that Yp − Xp = Ym − Xm;

2. Behavioral convergence: Individuals of different types are behaviorally more similar on

average to each other when mixed, so that Yp − Xp > Ym − Xm; and

3. Behavioral divergence: Individuals of different types are behaviorally more different on

average from each other when mixed, so that Yp − Xp < Ym − Xm.

Supporting information

S1 Text. Analytical treatment of the model.

(PDF)

S1 Fig. Theoretical predictions with differences in threshold variance. Task performance

frequency for a single task as a function of colony composition. Opaque circles represent indi-

vidual replicate colonies (N = 16; n = 100 replicates per composition), and solid circles repre-

sent average value (± s.e.) across replicates. Horizontal gray lines represent the average of the

pure colonies (first two columns). Types X and Y differ in threshold variance: σX = 0.1, σY =

0.5; all other parameters are identical (see S1 Table). Simulation code and data are available at

https://github.com/marikawakatsu/mixing-model.

(PDF)

S2 Fig. Behavioral variation (standard deviation in r.m.s.d. across colony members) as a

function of colony composition. Small opaque circles represent individual colonies, and large

solid circles represent the average values across n replicate colonies. Identical colors across

panels indicate ants of the same genotype, age, and morphological types. (a) Behavioral varia-

tion as a function of colony genetic composition in colonies with A brood (N = 16; Bpure vs.

Mixed: z = −2.85, p = 0.013; Apure vs. Mixed: z = 0.81, p = 0.421). (b) Behavioral variation as a

function of colony genetic composition in colonies with B brood (N = 16; Bpure vs. Mixed: z =

−2.76, p = 0.012; Apure vs. Mixed: z = −0.81, p = 0.419). (c) Behavioral variation as a function of

colony age composition (N = 16; Youngpure vs. Mixed: z = 2.01, p = 0.090; Oldpure vs. Mixed:

z = 3.89, p = 3.07�10−04). (d) Behavioral variation as a function of colony morphological com-

position (N = 8; Regular Workerpure vs. Mixed: z = −2.85, p = 0.013, Intercastepure vs. Mixed:

z = 1.53, p = 0.254). n.s., nonsignificant; �, p< 0.05; ��, p< 0.01; ���, p< 0.001. Raw data are

available at doi.org/10.5061/dryad.hx3ffbgdd. r.m.s.d., root–mean–square deviation.

(PDF)

S3 Fig. Colony-level specialization (day-to-day rank correlation in r.m.s.d.) as a function

of colony composition. Small opaque circles represent individual colonies, and large solid cir-

cles represent the average values across n replicate colonies. Identical colors across panels indi-

cate ants of the same genotype, age, and morphological types. (a) Specialization as a function

of colony genetic composition in colonies with A brood (N = 16; GLM post hoc tests; Bpure vs.

Mixed: z = −2.78, p = 0.017; Apure vs. Mixed: z = 1.25, p = 0.256). (b) Specialization as a func-

tion of colony genetic composition in colonies with B brood (N = 16; Bpure vs. Mixed: z =

−2.41, p = 0.048; Apure vs. Mixed: z = 0.88, p = 0.378). (c) Specialization as a function of colony

age composition (N = 16; Youngpure vs. Mixed: z = 3.01, p = 0.005; Oldpure vs. Mixed: z = 5.01,
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p = 1.63�10−06). (d) Specialization as a function of colony morphological composition (N = 8;

Regular Workerpure vs. Mixed: z = −4.35, p = 4.07�10−05, Intercastepure vs. Mixed: z = 2.73,

p = 0.013). n.s., nonsignificant; �, p< 0.05; ��, p< 0.01; ���, p< 0.001. Raw data are available

at doi.org/10.5061/dryad.hx3ffbgdd. r.m.s.d., root–mean–square deviation.

(PDF)

S4 Fig. Dynamics of stimulus levels in pure and mixed colonies. Each point shows the simu-

lated stimulus level for the 2 tasks (task 1 on the horizontal axes and task 2 on the vertical axes)

in the generation indicated by its color. Each of panels a, b, d, and e shows a pure colony of the

type indicated; each of panels c and f shows a mixed colony of Types X and Y. Panels a–c (δ =

1.3) correspond to Fig 3A and d–f (δ = 0.6) to Fig 3B. (a–c)When the demand is higher (δ =

1.3), the more efficient type (Type X) can keep up with the demand on its own (a) but the less

efficient type (Type Y) cannot, as demonstrated by the continual growth of the stimuli (b);

however, mixed colonies can keep up with the higher level of demand (c). (d–f) When the

demand is lower (δ = 0.6), the stimulus levels grow quickly at first but then stabilizes to an

oscillatory pattern around a point, demonstrating that both pure and mixed colonies can keep

up with the demand. Each simulation ran for 1,000 time steps; all other parameters are identi-

cal to those in the corresponding panels in Fig 3. Simulation code and data are available at

https://github.com/marikawakatsu/mixing-model.

(PNG)

S5 Fig. Theoretical predictions of the expanded model on behavioral variation. Behavioral

variation was quantified as the standard deviation of task performance frequency across indi-

viduals in a colony. Opaque circles represent individual replicate colonies (N = 16; n = 100 rep-

licates per composition), and solid circles represent the average value (mean ± s.e.) across

replicates. Types X1, X2, X3, and Y and their corresponding parameters are identical to those

in Fig 3. See S1 Table for other parameters. Simulation code and data are available at https://

github.com/marikawakatsu/mixing-model.

(PDF)

S6 Fig. Theoretical predictions of the expanded model on behavioral specialization. Col-

ony-level specialization was quantified using Spearman rank correlation on consecutive win-

dows of 200 time steps. Opaque circles represent individual replicate colonies (N = 16; n = 100

replicates per composition), and solid circles represent the average value (mean ± s.e.) across

replicates. Types X1, X2, X3, and Y and their corresponding parameters are identical to those

in Fig 3. See S1 Table for other parameters. Simulation code and data are available at https://

github.com/marikawakatsu/mixing-model.

(PDF)

S7 Fig. Model predictions for non-1:1 mixes. Colonies with varying ratios of X and Y individ-

uals were simulated under different conditions of threshold values, task performance effi-

ciency, and task demand (n = 100 replicates per colony composition). Each large circle

represents the mean task performance (task 1) for that mix of X and Y individuals; the neigh-

boring smaller circles represent the means of X and Y individuals, respectively, within that

mix. Dashed lines indicate the null hypothesis of linear behavioral effects of mixing types. The

boxes highlight the behavioral patterns characterizing the 1:1-mixes, and their labels indicate

correspondence with Fig 3 (a: Fig 3E; b: Fig 3B; c: Fig 3A; and d: Fig 3D). Types X1, X2, X3, and

Y and their corresponding parameters as in Fig 3. See S1 Table for other parameters. Simula-

tion code and data are available at https://github.com/marikawakatsu/mixing-model.

(PDF)
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